Chap. 4. <malloc.h>

char* nem2 = new char [1048]; /l C++ style

The calloc function is similar to malloc, except that it guarantees that the allocated
memory is initialized with the zero byte.

The free function is similar to the delete operator, and they both deallocate dynamic
memory. For example, the following statement discards dynamic memory referenced by a
variable called meml:

free (mem1),

The realloc function is used to adjust the size of any dynamic memory allocated by
malloc or calloc. It is very useful in managing a dynamic array that may change size in the
course of a process execution. For example, a program that stores any user input from the
standard input has no way of knowing ahead of time how many lines of data will be obtained
from a user. A dynamic array may be used in this situation to allocate just the exact amount of
memory, via the realloc function, to store the user input at any time.

Note that in the above example, the process may also use a linked-list or a fixed-size
array to store the user’s input. The drawbacks of the linked-list approach, as compared to
using an array (static or dynamic), are: Because each linked-list record requires storage for a
next pointer, it consumes more memory that does an array with the same number of entries.
Furtherngore. linked-lists setup and traversal are generally more time-consuming that are
accessifdg data from arrays. The drawback of using a fixed-size array as compared to using a
dynamic array is that it requires preallocation of all the memory to store the maximum
allowed input data; thus, it is not as efficient in memory usage as dynamic arrays. Moreover,
this approach imposes a maximum amount of input data allowed and may be too restrictive to
users. Using a dynamic array, no such limit is necessary. In summary, dynamic arrays are pre-
ferred over linked-lists when the data stored are accessed frequently and when the order of
the stored data does not change. Also dynamic arrays are preferred over static arrays if the
size of an array may change (increase or decrease) over time and if it is not practical to set an
upper limit on the size of an array.

The realloc function takes two arguments.The first argument, old_memp, contains an
address of a dynamic memory region previously allocated. The second argument, new_size,
is the size, in bytes, of a new dynamic memory region to be returned. The new_size value
may be larger or smaller than the size of the old memory region as referenced by old_memp.
The realloc function attempts to adjust the old dynamic memory region size to be new_size.
If this cannot be achieved, a new dynamic memory region of size new_size is allocated. The
function then copies data from the old memory region to the new memory region, up to the
maximum size of the old or the new memory region (whichever is less), and the old memory
region is deallocated by the function. If the new memory region size is larger than the old
one. the content of the memory in the new one that is not initialized by the old memory data
is undefined.

101

Chap. 4. <malioc.h>

N

The following malloc.C program depicts the use of realloc to store a user’s input data
from the standard input;

#include <iostream.h>
#include <string.h>
#include <malloc.h>
int main()
{
char** inList = 0, buf[256};
int numin = 0, max_size = 0;
/* get all input lines from a user */
while (cin.getline(buf, sizeof(buf))) {
if (++numin > max_size) {
max_size += 2;
if (linList)
inList = (char**)calloc(max_size,sizeof(char*));
else
inList = (char**)realloc(inList,sizeof(char*)*max_size);
}
[* store an input line */
inList{numin-1] = (char*)malloc(strlen(buf)+1);
strepy(inListinumin-1], buf);
/* now print back all input lines from a user */
while (--numin>=0) {
cout << numin << “: “ << inList[numin] << endl;
free(inList{numin});
}
free (inList);
return 0;

The above sample program reads input lines from the standard input. As it reads each
input line it stores it into the inList array. The size of the inList array is adjusted dynamically
based on the actual number of input lines read. The max_size and numin variables contain the
current size of the InList array and the number of input lines actually read, respectively. If the
numln value is the same as that of max_size and a new input line is read, the max_size value is
increased by two, and the inList array size is enlarged by two more entries via the realloc
function call.

102

Chap. 4. <time.h>

After all input lines are read and end-of-file is encountered from the standard input, the
sample program prints all saved lines to the standard output, in an order reverse to that found
and deallocates all dynamic memory along the way.

Note that in the sample program, when the inList variable is first allocated, it is done
via a calloc call. This is because if one attempts to allocate dynamic memory via realloc as:

char* memp = (char*)realloc(0, new_size);

on some UNIX systems the realloc function will segmentation fault (e.g., Sun OS 4.1.x),
whereas on other systems the function will work. Thus, to ensure portability, one should
avoid assigning a NULL as the first argument value to any realloc call.

Finally, the dynamic memory allocated via malloc, calloc, and realloc may be managed
differently than that allocated by the new operator. This means that memory allocated by mal-
loc, calloc, or realloc should be deallocated via the free function only, and that allocated by
the new operator should be discarded by the delete operator.

4.6 <time.h>

The <time.h> header declares a set of functions for system clock query. They can be
used to obtain the local and the Universal Standard Time (UTC) date/time, as well as statis-
tics of cpu (central processing unit) uses of processes.

The functions declared in the <time.h> header are:

time_t fime (time_t* timv);

const char* ctime (const time_t* timv);
struct tm* localtime (const time_t* timv);
struct tm* gmtime (const time_t* timv);
const char* asctime (const tm* tm_p);
time_t mktime (struct tm* tm_p);
clock_t clock (void);

The time function returns the number of seconds elapsed since the official birthday of
UNIX: January 1, 1970. The time_t-typed result is passed via the timy argument and via the
function’s return value if it is not NULL.

103

Chap. 4. <time.h>

The ctime function returns the local date and time in the following example format:
“Sun Sept. 16 01:03:52 1995\n”

The ctime function is almost always used with the time function to obtain the local date/
time:

time_t timv = time(0);
cout << “local time: “ << ctime (&timv);

The localtime and gmtime functions take an address of a time_t-typed variable and
returns an address of a read-only struct mm-typed record. The time_t-typed input variable
should be set by a prior time function call, and the returned struct tm-typed record contains
the local and UTC date/time information, respectively. The struct tm-typed record may be
passed to the asctime function to obtain a character string of the time stamp in the same for-
‘mat as that of the ctime returned value. The struct tm data type is defined in the <time.h>
header.

The following statements illustrate the use of these functions:

#include <time.h>

time_t timv = time(0);

struct tm *local_tm = localtime(&timv);

struct tm *gm_tm = gmtime(&timv);

cout << “local time stamp: “ << asctime(local_tm);
cout << “UTC time stamp: “ << asctime (gm_tm);

The following function returns the time stamp of any number of hours before or after
the current time:

- const char* time_stamp(long offset_hours)

{
time_t timv =time (0); // get current time
timy += offset_hours * 60 * 60; // covert offset to sec
return ctime(& timv); // return offset time stamp
}

The mktime function is the inverse of the localtime and gmtime functions. It takes an
address of a struct tm-typed record and returns a time_t value for it. Furthermore, the mktime

104

Chap. 4. <time.h>

functions normalize the data in the input argument to make them within range. The function
is useful in getting the time stamp of any arbitrary date from 00:00:00 UTC, January 1, 1970
to 03:14:07 UTC, January 19, 2038, inclusively.

For example, the following program depicts the day of the week for April 5, 1999:

#include <iostream.h>
#include <time.h>

static struct tm time_str; // initializes all fields to 0
main()
{
time_t tmv;
time_str.tm_year = 1999 - 1900, // year = 1999
time_str.tm_mon =4-1; // mon = April
time_str.tm_mday = 5; // day =5

if ((tmv=mktime(&time_str)) !=-1) {
timv[3] = NULL;
cout << timv << endl; // should print “Mon”

}

The definition of the clock function’s return value may vary on different systems. The
ANSI C standard defines the clock function returns the number of microseconds elapsed
since a calling process started executing. However, on some UNIX systems, the clock func-
tion’s return value is the number of microseconds elapsed since the process first called the
clock function. Users should consult their system programmer’s reference manual or the
clock man page on their system for the exact definition.

However, the following clock.C program illustrates the correct use of the clock function
to monitor process executing time, regardless of how the function is implemented on a given
system:

#include <iostream.h>
#include <time.h>

main()

{
time_t clock_tick = CLOCKS_PER_SECOND;
clock_t start_time = clock(); /] start timer

/* do the normal work of the process ..."/

105

Chap. 4. <assert.h>

clock_t elapsed_time = clock() - start_time;
cout << “Run time: “ << (elapsed_time / clock_tick) << end!;

4.7 <assert.h>

The <assert.h> header declares a macro that can be used to assert some conditions in a
process that should always be true. If, however, an assertion error occurs during a process
execution, the macro flags an error message to the standard error port and indicates that phys-
ical line in which the source file assertion failed. After that, the macro aborts the process.

Thus, the assert macro can be a substantial time saver in helping users to debug their
programs for checking “should not have occurred” conditions. Furthermore, the assert mac-
ros can be taken out in a released product just by specifying the -DNDEBUG switch when
compiling the source code of the product

The following assert.C example statements illustrate the use of the asserr macro:

#include <fstream.h>

#include <string.h>

#include <assert.h>

int main(int argc, char* argv(])

{
assert (argc > 1); : // should have 1 arg
ifstream ifs(argv(1]);
assert(ifs.good()); // should be opened OK
char *nam = new char[strlen(argv[1])+1];
assert(nam); // should not be NULL

When the assert.C program is compiled and run with no argument, the console output

% cc assert.C -0 assert ; assert
Assertion failed: file “assert.C”", line 5

The assert macro is defined in the <assert.h> as:

106

Chap. 4. <stdarg.h>

#ifndef NDEBUG
#define assert(ex) { if (!(ex)) {\
forintf(stderr,”Assertion failed: file: \”%s\”, line %ed\n”, \
_FILE _, _LINE__); exit(1); }
#endif '

Note that in the above the assert is a macro and can be compiled away from users’ pro-
gram by defining the NDEBUG manifested constant.

4.8 <stdarg.h>

The <stdarg.h> header declares a set of macros that users may use to define variable
argument functions. Examples of variable argument functions are printf and scanf in C. These
functions may be called with one or more actual arguments, and the functions must get all
those arguments to function correctly. This is accomplished by making use of the macros
defined in the <stdarg.h> header.

The <stdarg.h> header defines the following macros:

#define va_start(ap,parm) (ap) = (char*)(&(parm) + 1)

#define va_arg(ap,type) ((type*)((char*)(ap) += sizeof(type)))[-1]
#define va_end(ap)

To use the above macros, a function must have one well-defined argument in its proto-
type. The va_start macro is called to set the ap argument to contain the location of the run-
time stack where the next argument value after parm (which is the last known argument of
the calling function) resides. The macro does that by taking the address of parm and adding
the byte offset of the data to which parm points. This gives the address of the next function
argument value after parm.

The va_arg is called to extract the next argument value in the run-time stack. For this to
work, the caller must know the data type of the next argument on the stack. The va_arg
macro does two things for each call:

« Advances ap to point to a stack location after the next argument to be returned
« Returns the next argument on the stack

107

Chap. 4. <stdarg.h>
For the first task, the operation:
(char*)(ap) += sizeof(type)

typecasts ap to be a character pointer, then adds the size of the next argument data. This, in
effect, advances ap to point to the address of the argument after the one to be fetched.

The second task is accomplished via the operation:

(type*)((char*)(ap) += sizeof(type)))i-1]

The above operation typecasts the ap that has been newly advanced to be an array of
type. The -1 index causes the next.argument data on the stack to be returned to the caller. The
following diagram illustrates the operations of va_arg; the next argument to be returned is
‘assumed to be of type double:

ap
((double*)(ap) += sizeof(double)

stack

double | char int char

array pf double

4
l

((doube*)(ap)){-1]

The va_end is currently an NOP macro. It is defined to match the va_start macro and as
a place-holder for any future extension of the stdarg.h functionality.

The following pritnf.C program contains the my_prinif function, which emulates the
printf function:

#include <iostream.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <floatingpoint.h>

#define SHOW(s) fputs(s,stdout), cnt+=strien(s)

108

Chap. 4. <stdarg.h>

/* my version of printf */
int my_printf (const char* format, ...)

{
char *tokp, ifmt[256], *hdr = ifmt, buf[256);
int cnt=0;
va_list pa;
strcpy(ifmt,format); // use local copy of the input text
va_start(pa,format); // pa points to args on stack

while (tokp=strchr(hdr,%’)) { // search for the ‘%’ character
*tokp++ = \0';
SHOW(hdr); // show leading text up to ‘%’
if (strchr(“dfgeisc%",*tokp)) { /doifa legal format spec
switch (*tokp) {

case ‘'d": I %i, %d

case ‘i ,
geconvert((double)va_arg(pa,int),sizeof(buf),O,buf Y;
break;

case ‘s’ Il %s
strcpy(buf,va_arg(pa,char®));
break;

case ‘c’ /I %C
buf[0] = va_arg(pa,char);
buf{1] ="0’;
break;

case ‘f: 1 Y%f
gconvert(va_arg(pa,double),8,1,buf);
break;

case ‘g Il %9
gconvert(va_arg(pa,double),8,0,buf);
break; :

case ‘%" ' Il %%
strepy(buf%");
break;

}
SHOW(buf); // show the extracted argument
}
else { // Show the character as is
putchar(*tokp);

109

Chap. 4. <stdarg.h>

cnt++;
}
hdr = tokp + 1;
}
SHOW(hdr); // show any last trailing text
va_end(pa);
return cnt; // return the no. of char. printed
}
int main()
{
int cnt = my_printf(“Hello %% %s %zZZ\n", “world”);
cout << “No: char: “ << cnt << endl;
cnt = my_printf(“There are %d days in %c year\n”, 365, ‘A’);
cout << “No. char: “ << cnt << end|;
cnt = my_printf(“%g x %i = %f\n”, 8.8, 8, 8.8*8);
cout << “No. char: “ << ¢nt << endi;
return O;
}

in the above program, the gconvert function converts a double-type value to a character
string format. This is a non-ANSI C standard function but is commonly available on most
UNIX systems. The function prototype of gconvert is:

char* gconvert (double dval, int ndigits, int trailing, char* buf);

The dval argument to gconvert contains the double-type value to be converted, and the
buf argument specifies a user-defined buffer where the converted character string is placed.
The ndigits argument defines the maximum number of significant digits that the buf argument
may hold, and the rrailing argument value may be 0 or 1, which determines whether or not
any trailing decimal point or zero should be discarded. The function returns the buffer
address as referenced in the buf argument.

The compilation and sample output of this test program is:

% cc printf.c -o printf
% printf
Hello % world zZZ

110

Chap. 4.

<stdarg.h>

No. of char: 18

There are 365 days in A year
No. of char: 29

8.8 x 8 = 70.400000

No. of char: 20

Associated with the va_arg’ macros are the vfprinif, vsprint, and vprintf functions.
These are similar to the fprintf, sprintf, and printf functions, respectively, except that they
take ap as a pointer to the actual arguments of callers. These functions’ prototypes are:

int vprintf (const char* format, va_list ap);
int vsprintf (char* buf, const char* format, va_list ap);
int vfprintf (FILE* fp, const char* format, va_list ap);

These functions can be used to write a general message-reporting function:

/* source file: test_vfprintf.c */

#include <stdio.h>

#include <stdlib.h>

#inciude <stdarg.h>

typedef enum { INFO, WARN, ERROR, FATAL } MSG_TYPE_ENUM,;
static int numErr, numWarn, numinfo;

void msg (const MSG_TYPE_ENUM mtype, const char” format, ...)
{
switch (mtype) {
case INFO: numinfo++;
break;
case WARN: numWarn++;
fputs(“Warning: “,stderr);
break;
case ERROR:nurnErr++;
fputs(“Error: “,stderr);

break;
case FATAL: fputs(“Fatal: “, stderr);
break;
}
va_list pa;

va_start(format, ap);

111

Chap. 4. Command Line Arguments and Switches

viprintf(stderr, format, pa);
va_end(ap);
if (mtype == FATAL) exit(2);

}
/* Tets program for the msg function */
int main()
{
msg(INFO, “Hello %% %s %%\n”", “world”);
msg(WARN, “There are %d days in %c year\n”, 265, “A”),
msg (ERROR, “%g x %i = %f\n”, 8.8, 8, 8.8"8),
msg(FATAL, “Bye-bye\n”);
} .

The compilation and execution of this test program are:

% cc test_viprintf.c -o test_viprintf
% test_viprintf '

Hello % world %

Warning: There are 365 days in A year
Error: 8.8 x 8 = 70.400000

Fatal: Bye-bye

4.9 Command Line Arguments and Switches

The getopt function that is declared in the <stdlib.h> header may be used to implement
programs that accept UNIX-style command line switches and arguments. Specifically, such
programs’ invocation syntax must be:

<program_name> [-<switch> ...] [<argument> ...]

All switches (or options) to a program must each begin with a “-” character and then a
single letter (e.g., -0). Switch letters are case-sensitive. Multiple switches may be stacked
such that: -a -b switches may be specified as -ab or -ba. A switch may be followed by an
optional argument (e.g., -0 a.out). If two or more switches are stacked, only the last switch
specified may accept an argument. For example: -0 a.out -O may be specified as -Oo a.out,
but not as -00 a.out.

No switches may be specified after nonswitch arguments to a program. Thus the fol-
lowing invocation is incorrect, as the nonswitch argument /usr/prog/test.c is specified before
the -o switch.

112

Chap. 4. Command Line Arguments and Switches

% a.out -l /usr/prog/test.c -0 abc

If a program’s invocation follows the above rules, the program may use the gefopt func-
tion to extract switches and any of their associated arguments from the command line. The
use of this is shown later on.

The getopt function and its associated global variables oprerr, optarg, and optind are
declared in the <stdlib.h> header:

extern int optind, opterr;
extern char* optarg;

int getopt (int argc, char *const* argv(], const char* optstr),

The first two arguments to a getopt function call are the argc and argv variables of the
main function, respectively. The optstr argument contains a list of switch letters that are legal
to the program. The function scans the argv vector and looks for switches that are defined in
optstr. For each call of geropt, the function returns a switch letter that is found in argv and is
defined in oprstr. If a switch is specified as <switch_letter>: in optstr, then the switch, if
specified, must be accompanied by an argument, and that argument can be obtained via the
optarg global pointer.

If a switch is found in argv but is not listed in optstr, the getopt function will flag an
error message to the standard error port, and the function returns the “?” character. However,
if a user sets the opterr global variable to be nonzero before calling getopt, the function will
be silent for subsequent illegal switches found in argv.

Finally, when no more switches are found in argv, the getopt function returns the EOF
value, and optind is set to point to the entry in argv where the first non-switch command line
argument is stored. If optind is same as argc, there are no nonswitch arguments to a program.

The following test_getopt.C program accepts the -a, -b, and -o switches. If the -0
switch is specified, there shouid also be a file name specified with it:

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static char* ouffile;
static int a_flag, b_flag;

113

Chap. 4 Command Line Arguments and Switches

int main(int argc, char* argv(])

{
int ch;
while ((ch=getopt(argc, argv,"o:ab”)) I= EOF)
switch(ch) {
case ‘a’; a_flag=1; // found -a
break;
case b b_flag = 1; // found -b
break;
case ‘0’ outfile = new char{strien(optarg)+1};
strcpy(outfile,optarg);, // found -o <file>
break;
case ‘?’: /* let getopt flags an eror message */
default: break; // an illegal switch
}
/* no more-switches. Scan the rest of non-switch arguments */
for (; optind < argc; optind++)
cout << “ non-switch argument: “ << argv[optind] << end|;
return O,
}

The compilation and sample runs of the test_getopt.C programs are:

% CC test_getopt.c -o test_getopt
% test_getopt

% test_getopt -abo xyz /etc/hosts
non-switch argument: /etc/hosts

% test_getopt -xay -bz lusrflib/libc.a
a.out: illegal option -- x

a.out: illegal option -- y

a.out: illegal option -- z

non-switch argument: /ust/lib/libc.a

The limitations of geropt are: (1) switches must use single letter only; (2) switches must
either have associated arguments or none; users cannot define switches that may optionally
accept argument; (3) the function does not check the data type of switch arguments; (4) users
may not specify mutually exclusive switches. ‘

114

Chap. 4. <setjmp.h>

Despite the above limitations, getopt is valuable in saving users program development
and debug time, and ensuring that users’ programs follow the UNIX invocation convention

410 <setjmp.h>

The <setjmp.h> header declares a set of functions that allow a process to do goto from
one function to another. Recalling a C goto statement only allows a process to transfer pro-
cess flow from one statement to another within the same function. The functions defined in
the <setjmp.h> header eliminate this restriction. These functions should be used sparingly.
For example, if an error is detected in a deeply recursive function, it makes sense to report the
error and then do a goto to the main function, so as to start the processing over again. This is
what a UNIX shell does if an error is detected in one of its subshells. In this circumstance, the
<setjmp.h> functions offer efficient error recovery and save users from adding layers and lay-
ers of error-checking code for error recovery. However, like the problem of using goto, if
these functions are used without discipline in a program, it will become difficult for users to
track program flow.]

The <setjmp.h> header defines the following functions:

int setjmp (jmp_buf loc);
void longjmp (jmp_buf loc, int val);

The setjmp function records a location in a program code where the future goto (via the
longjmp call) will return. The jmp_buf data type is defined in the <setjmp.h> header, and the
loc argument records the location of the sezjmp statement. If a user wishes to define multiple
locations in a program where the future longjmp call can return, each location must be
recorded in a jmp_buf-typed variable and is set by a setjmp call.

The setjmp function always returns zero when it is called directly in a process.

The longjmp function is called to transfer a program flow to a location that was stored
in the loc argument. The program code marked by loc must be in a function that is among the
callers of the current function. When the process is “jumping” to that target function, all the
stack space used by the current function and its callers up to the target function are discarded
by the longjmp function. The process resumes execution by reexecuting the setjmp statement
in the target function that is marked by loc. The return value of the setjmp function is the val
value, as specified in the longjmp function call. The val value should be nonzero (if it is zero,
it is set to one by the setjmp function) so that it can be used to indicate where and why the
longjmp function was invoked, and a process can do error-handling accordingly.

115

Chap. 4. <setjmp.h>

The following test_setjmp.C program illustrates the use of setjmp and longjmp func-
tions:

/* source file name: test_setimp.C */
#include <iostream.h>

#include <setjmp.h>

static jmp_buf loc;

int main()
{
int retcode, foo();
if ((retcode=setjimp(loc))!=0) { /I error recovery
cerr << “Get here from longjmp. retcode=" << retcode << endl;
return 1;
}

/* normal flow of program */
cout << “Program continue after setting loc via setjmp...\n";
foo();
cout << “Should never get here\n";
return 1;

}

int foo()

{
cout << “Enter foo. Now call longjmp....\n";
longjmp (loc, 5);
cout << “Should never gets here....\n";
return 2;

The compilation and output of the test_setjmp.C program are:

% cctest_setjmp.c -otest_setjmp

% test_setjmp

Program continue after setting loc via setjmp...
Enter foo. Now call longjmp....

Get here from longjmp. retcode=5

116

Chap. 4. <pwd.h>

411 <pwd.h>

The <pwd.h> defines a set of functions for users to obtain user accountant information,
as specified in the UNIX /etc/passwd file. The functions defined in the <pwd.h> header are:

const struct passwd* getpwnam (const char* user_name);
const struct passwd* getpwuid(const int uid);

int setpwent (void):

const struct passwd* getpwent (void);

int endpwent (void),

const struct passwd* fgetpwent (FILE * fptr);

The struct passwd data type is defined in the <pwd.h> as:

struct passwd

{
char* pw_name; // user's login name
char* pw_passwd: /I encrypted password
int pw_uid; // user's user ID
int pw_gid; // user’s group D
char* pw_age, // password aging info
char pw_comment; // general user’s info
char* pw_dir; // user's home directory
char* pw_shell; // user’s login shell

2

Each struct passwd record contains data from one line of the /etc/password file. This
contains the account information of one user on a UNIX system. Specifically, the information
consists of a user’s login name, assigned user ID, group ID, login shell, home directory, and
login password (in encrypted form), etc.

The getpwnam function takes a user login name as argument and returns a pointer to a
struct passwd-typed record that contains that user’s information if the user is defined on the
system on which this function call is made. Conversely, it returns a NULL pojnter if the given
user name is invalid.

The following statement depicts the home directory of a user name joe:

117

Chap. 4. <pwd.h>

struct passwd “pwd = getpwnam(“joe”);
if (lpwd)
cerr << “joe’ is not a valid user on this system\n”;
else
cout << pwd->pw_name << “, home=" << pwd->pw_dir << endl;

The getpwuid function takes a user UID as argument, and returns a pointer to a struct
passwd-typed record that contains the user’s information if the user is defined on the system
on which this function call is made. Again, it returns a NULL pointer if the given user UID is
invalid.

The following statement depicts the user name and login shell of a user whose UID is
15:

struct passwd *pwd = getpwuid(15);
if ('pwd)
cerr << “15’is not a valid UID on this system\n”;
else
cout << pwd->pw_name << ", shell=" << pwd->pw_shell << endt;

The setpwent function resets an internal file pointer to point to the beginning of the /etc/
passwd file. The getpwent function returns a pointer to a struct passwd-type record, which
contains the next entry of the /etc/passwd file. When all entries in a /etc/passwd are scanned
by the getpwent function, it returns a NULL pointer to indicate end-of-file. The endpwent
function is called to close the internal file pointer, which references the /etc/passwd file.

The following test_pwd.C program dumps out all defined users and their UID and GID
information to the standard output:

#include <iostream.h>
#include <pwd.h>
int main()
{ .
setpwent();
for (struct passwd *pwd; pwd=getpwent();)
cout << pwd->pw_name << “, UID: “ << pwd->pw_uid
<< ", GID: * << pwd->pw_gid << endl;
endpwent();
return O;

118

Chap. 4. <grp.h>

Finally, the fgetpwent function is like the gefpwent, except here users supply a file
pointer that references a file having the same syntax of the /etc/passwd file. The function
returns an user accountant data at the next entry in the given file. The setpwent and endpwent
functions are not used with this fgetpwent function.

412 <grp.h>

The <grp.h> defines a set of functions for users to obtain group accountant information
as specified in the UNIX /etc/group file. The functions defined in the <group.h> header are:

const struct group* getgrnam (const char* group_name);
const struct group* getgrgid(const int gid);

/im setgrent (void),

const struct group* getgrent (void);

int endgrent (void);

const struct group* fgetgrent (FILE * fptr);

The struct group data type is defined in the <grp.h> header as:

struct group

{
char* gr_name; // group name
char* gr_passwd: // group encrypted password
int gr_gid; // group 1D
char** gr_comment; // group member names
1

Each struct group record contains data from one line of the /etc/group file. This con-
tains the account information of one group on a UNIX system. Specifically, the information
comsists of a group name, assigned group ID, and a list of those user names that are members
of the group.

The getgrnam function takes a group name as argument and returns a pointer to a struct
group-typed record that contains that group’s information if the group is defined on the sys-
tem on which this function call is made. It returns a NULL pointer if the given group name is
invalid.

119

Chap. 4. <grp.h>

The following statement depicts the group ID of a group name developer:

struct group *grp = getgrnam(“developer”);
if (Igrp)

cerr << “developer’ is not a valid group on this system\n”;
else

cout << grp->gr_name << “, GID=" << grp->gr_gid << end};

The getgrgid function takes a group ID as argument and returns a pointer to a struct
group-typed record that contains that group’s information if the group is defined on the sys-
tem on which this function call is made. On the contrary, it returns a NULL pointer if the
given group ID is invalid.

The following statement depicts the group members of a group whose GID is 200:

struct group *grp = getgrgid(200);

if ('grp)
cerr << “200’ is not a valid GID on this system\n”;

else for (int i=0; grp->pw_comment && grp->pw_comment[i]; i++)
cout << grp->gr_comment[i] << endl;

The getgrent function resets an internal file pointer to point to the beginning of the /etc/
group file. The getgrwent function returns a pointer to a struct group-type record that con-
tains information at the next entry of the /etc/group file. When all entries in a /etc/group are
scanned by the gergrwent function, it returns a NULL pointer to indicate end-of-file. The
endgrent function is called to close the internal file pointer, which references the /etc/group
file.

The following test_grp.C program dumps all defined groups and their GID information
to the standard output:

#include <iostream.h>
#include <grp.h>
int main()
{
setgrent();
for (struct group*grp; grp=getgrent();)
cout << grp->gr_name << *“, GID: “ << grp->gr_gid << endl;
endgrent();
return O;

120

Chap. 4. <crypt.h>

Finally, the fgergrent function is like the gergrent, except here users supply a file pointer
that references a file having the same syntax of the /etc/group file. The function returns a
group accountant data at the next entry in the given file. The setgrent and endgren: functions
are not used with this fgergrent function.

413 <crypt.h>

The <crypt.h> header declares a set of functions for data encryption and decryption.
These are important functions for maintaining system security. For example. user passwords
and system data files that need high security must be encrypted so that no unauthorized per-
son can easily find out what they are. Furthermore, authorized persons must know the secret
keys to decrypt these objects so that they can read and modify them.

The <crypt.h> header declares the following functions:

char* crypt (const char* key, const char* salt);
void setkey (const char salt[64]);
void encrypt (char key[64], const int flag);

The crypt function is used on UNIX systems to encrypt user passwords and to check
for user login password validity. The function takes two arguments. The first argument, key, is
a user-defined password. The second argument, sali, is used to encode the resultant encrypted
string. The salr argument value consists of two characters from the following character set:

‘a’to‘z’,'A’to‘Z','0'to ‘9, or /

If the function is called by the password process on UNIX to encode a new user pass-
word, the process supplies a randomly generated salt value. The resultant encoded string is in
the format of:

<salt><encrypted password string>

Then, when a user attempts to login to a system by supplying a user name and a pass-
word, the login process checks the authentication of the user as follows:

#include <iostream.h>
#include <crypt.h>
#include <pwd.h>
#include <string.h>

121

Chap. 4. <crygt.h>

int check_login(const char* user_name, const char* password)

{

struct passwd* pw;

if ({(pw=getpwnam(user_name))) {
cerr << “invalid login name: “ << user_name << end|;
return O; /I authentication fails

}
char* new_pw = crypt(password,pw->pw_passwd);
if (stremp(new_pw,pw->pw_passwd)) {
cerr << “Invalid password: “ << password << endl;
return O; // authentication fails

}

/* both user name and password are valid */
return 1;

In the above example, the function is called to ensure that the given user login name
and password are valid. The function returns 1 if they are valid, O otherwise. The function
calls the getpwnam function to convert a given user name to a pointer to the struct passwd-
typed record. If the user name is valid, the getpwnam function returns a non-NULL value,
otherwise, it returns NULL value, and the check_login function returns a failure status.

After a struct passwd-typed record is obtained, the check_login function calls crypt to
encrypt the given password. The salt supplied to the crypt call is the pw_passwd field of the
struct passwd-type record. This is the encrypted password of the user, and the first two char-
acters of this string are the salr that was used to generate the encrypted password. The return
value of crypt is an encrypted password string, and it is compared against the pw_passwd
value. If they match, the given password is valid, otherwise, the check_login function returns
a failure status.

As can be seen from the above example, the crypt function does not decrypt strings.
However, it can be used to encrypt a new string and then compare that against an old string to
verify the old string content. It is important to note that the first two characters of the old
encrypted string are the salr used to generate it. If the new string is the same as the old one
prior to encryption and is encrypted with a different salt value, the resultant encrypted new
string will be different than the old one.

The setkey and encrypt functions perform a function similar to crypt, except they use
the National Bureau of Standards (NBS) data encryption standard (DES) algorithm, which is
more secure than the algorithm used by crypt. The setkey function argument is a character
array of 64 entries. Each of these entries should contain an integer value of either 1 or 0,
which is one bit of an eight byte salt value. The encrypt function first argument key is a char-

122

Chap. 4. - Summary

acter array of 64 entries, each of these entries contains one bit of an eight byte key value to be
encrypted (if the third argument flag value is 0) or decrypted (if the flag value is 1). The
resultant encrypted or decrypted string is passed back to the caller in the same key argument.
The encrypt function can process up to only eight characters on each call.

4.14 Summary

This chapter described the ANSI C library functions and some UNIX-specific C library
functions. These functions are not covered by the C++ standard classes or by the UNIX and
POSIX APIs. Thus, by knowing these functions, users may make use of them to save applica-
tion development time and to ensure high portability and low maintenance of their end prod-
ucts. Examples were included in this chapter to illustrate the uses of some of these C library
functions.

As mentioned in the beginning of the chapter, the limitations of these C library func-
tions are that they do not provide enough functions for users to develop system-level applica-
tions. Users must use UNIX and POSIX APIs to create such applications. The remainder of
the book is devoted to describing the UNIX and POSIX APIs and the advanced usage of them
for system-level programming. In addition to that, examples will be shown on how to use
these APIs to implement some of the standard C library functions described in this chapter.

123

CHAPTER

UNIX and POSIX APIs

Unix systems provide a set of application programming interface functions (com-
monly known as system calls) which may be called by users’ programs to perform system-
specific functions. These functions allow users’ applications to directly manipulate system
objects such as files and processes that cannot be done by using just standard C library func-
tions. Furthermore, many of the UNIX commands, C library functions, and C++ standard
classes (e.g., the iostream class) call these APIs to perform the actual work advertised. Thus,
users may use these APIs directly to by-pass the overhead of calling the C library functions
and C++ standard classes, or to create their own versions of the UNIX commands, C library
functions and C++ classes.

Most UNIX systems proviae a common set of APIs to perform the following functions:

» Determine system configuration and user informatior
* Files Manipulation '
 Processes creation and control

* Interprocess communication

» Network communication

Most UNIX APIs access their UNIX kernel’s internal resources. Thus, when one of
these APIs is invoked by a process (a process is a user’s program under execution), the execu-
tion context of the process is switched by the kemel from a user mode to a kernel mode. A
user mode is the normal execution context of any user process, and it allows the process to
access its process-specific data only. A kemel mode is a protective execution environment
that allows a user process to access kernel’s data in a restricted manner. When the API execu-

125

Chap. 5. The POSIX APls

tion completes, the user process is switched back to the user mode. This context switching for
each API call ensures that processes access kernel’s data in a controlled manner, and mini-
mizes any chance of a run-away user application may damage an entire system. In general,
calling an API is more time-consuming than calling a user function due to the context switch-
ing. Thus, for those time-critical applications, users should call their system APIs only if it is
absolute necessary.

5.1 The POSIX APIs

Most POSIX.1 and POSIX.1b APIs are derived from UNIX APIs. However, the POSIX
committees do create their own APIs when there is perceived deficiency of the UNIX APIs.
For example, the POSIX.1b committee creates a new set of APIs for interprocess communi-
cation using messages, shared memory, and semaphores. There are equivalent constructs for
messages, shared memory, and semaphores in System V UNIX, but the latter constructs use a
nonpathname-naming scheme to identify these IPC facilities, and processes cannot use these
IPCs to communicate across a LAN. Thus, the POSIX.1b committee created a different ver-
sion of messages, shared memory, and semaphores that eliminated these short-coming.

In general, POSIX APIs uses and behaviors are similar to those of UNIX APIs. How-
ever, users’ programs should define the _POSIX_SOURCE (for POSIX.1 APIs) and/or
_POSIX_C_SOURCE (for both POSIX.1 and POSIX.1b APIs) in their programs to enable
the POSIX APIs declarations in header files that they include.

5.2 The UNIX and POSIX Development Environment

The <unistd.h> header declares some commonly used POSIX.1 and UNIX APIs. There
is also a set of API-specific headers placed under the <sys> directory (on a UNIX system it is
the /usr/include/sys directory). These <sys/...> headers declare special data types for data
objects manipulated by both the APIs and by users’ processes. In addition to these, the
<stdio.h> header declares the perror function, which may be called by a user process when-
ever an API execution fails. The perror function prints a system-defined diagnostic message
for any failure incurred by the API.

Most of the POSIX.1, POSIX.1b, and UNIX API object code is stored in the /ibc.a and
libc.so libraries. Thus, no special compile switch need be specified to indicate which archive
or shared library stores the API object code. However, some network communication APIs’
object code is stored in special libraries on some systems (e.g., the socket APIs are stored in
libsocket.a and libsocket.so libraries on Sun Mircosystems Solaris 2.x system). Thus, users
should consult their system programmer’s reference manuals for the special header and
library needed for the APIs they use on their systems.

126

Chap. 5. AP| Common Characteristics

5.3 APl Common Characteristics

Although the POSIX and UNIX APIs perform diverse system functions on behalf of
users, most of them returns an integer value which indicates the termination status of their
execution. Specifically, if a2 API returns a -1 value, it means the API's execution has failed,
and the global variable errno (which is declared in the <errno.h> header) is set with an error
code. A user process may call the perror function to print a diagnostic message of the failure
to the standard output, or it may call the strerror function and gives it erro as the actual
argument value, the strerror function returns a diagnostic message string and the user process
may print that message in its preferred way (e.g., output to a error log file).

The possible error status codes that may be assigned to errno by any API are defined in
the <errno.h> header. When a user prints the man page of a API, it usually shows the possible
error codes that may be assigned to errno by the API, and the reason why. Since this informa-
tion is readily available to users and they may be different on different systems, this book will
not describe the ermo values for individual API in any details. However, the following is a
list of commonly occur error status codes and their meanings:

Error status code Meaning

EACCESS A process does not have access permission to per-
form an operation via a API

EPERM A API was aborted becaus¢ the calling process

’ does not have the superuser privilege

ENOENT An invalid file name was specified to an API

BADF A API was called with an invalid file descriptor

EINTR A API execution was aborted due to a signal inter-
ruption (see Chapter 9 for the explanation of signal
interruption)

EAGAIN A API was aborted because some system resource

it requested was temporarily unavailable. The API
should be called again later.

ENOMEM A API was aborted because it could not allocate
dynamic memory

EIO 1/O error occurred in a API execution

EPIPE A API attempted to write data to a pipe which has
no reader

EFAULT A API was passed an invalid address in one of its
arguments

ENOEXEC A API could not execute a program via one of the
exec API

ECHILD A process does not have any child process which it
can wait on

127

Chap. 5. Summary

If an API execution is successful, it returns either a zero value or a pointer to some data
record where user-requested information is stored.

5.4 Summary

This chapter gives an overview of UNIX and POSIX APIs and describes the common
uses and characteristics of these APIs. These APIs are powerful, and they enable users to
develop advanced system programs that manipulate system objects (e.g., files and processes)
in more ways than can be done via the standard C library functions and C++ classes alone.
Furthermore, users may use these APIs to create their own library or C++ classes or their own
versions of shell commands to augment those supplied by a system. However, most of these
APIs involve context switching of user processes between user mode and kernel mode: thus,
this is a time penalty in using these APIs.

The rest of the book examines the UNIX and POSIX APIs in more detail. The APIs are
for file manipulation, process manipulation, interprocess communication, and remote proce-
dure call. Examples will be shown on how to use these APIs to construct user’s own versions
of C library functions and UNIX shell commands, and also to create C++ classes to make
abstract data types for system objects such as processes and for system functions like inter-
process communication.

128

UNIX Files

Files are the building blocks of any operating system, as most operations 1 a system
invariably deal with files. When you execute a command in UNIX, the UNIX kernel fetches
the corresponding executable file from a file system, loads its instruction text to memory, and
creates a process to execute the command on your behalf. Furthermore, in the course of exe-
cution, a process may read from or write to files. All these operations involve files. Thus, the
design of an operating system always begins with an efficient file management system.

Files in UNIX and POSIX systems cover a wide range of file types. These include text
files, binary files, directory files, and device files. Furthermore, UNIX and POSIX systems
provide a set of common system interfaces to files, such that they can be handled in a consis-
tent manner by application programs. This, in turn, simplifies the task of developing applica-
tion programs on those systems.

This chapter will explore the various file types in UNIX and POSIX systems and will
show how they are created and used. Moreover, there is a set of common file attributes that an
operating system keeps for each file in the system -- these attributes and their uses are
explained in detail. Finally, the UNIX System V kernel and process-specific data structures
used to support file manipulation are described to tie in the system call interface for files. The
UNIX and POSIX.1 system calls for file handling are discussed in the next chapter.

129

Chap. 6. File Types

6.1 File Types
A file in a UNIX or POSIX system may be one of the following types:

* Regular file

* Directory file

¢ FIFO file

* Character device file
* Block device file

A regular file may be either a text file or a binary file. UNIX and POSIX systems do
not make any distinction between these two file types, and both may be “executable”, pro-
vided that the execution rights of these files are set and that these files may be read or written
to by users with the appropriate access permission.

Regular files may be created, browsed through, and modified by various means such as
text editors or compilers, and they can be removed by specific system commands (e.g., rm in
UNIX).

A directory file is like a file folder that contains other files, including subdirectory files.
It provides a means for users to organize their files into some hierarchical structure based on
file relationship or uses. For example, the UNIX /bin directory contains all system execut-
able-programs, such as cat, rm, sort, etc.

A directory may be created in UNIX by the mkdir command. The following UNIX
command will create the /usr/foo/xyz directory if it does not exist:

mkdir /usrffoo/xyz

A'UNIX directory is considered empty if it contains no other files except the “.” and “..”
files, and it may be removed via the rmdir command. The following UNIX command
removes the /usr/foo/xyz directory if it exists:

rmdir /usr/foo/xyz
The content of a directory file may be displayed in UNIX by the Is command.

A block device file represents a physical device that transmits data a block at a time.
Examples of block devices are hard disk drives and floppy disk drives. A character device
Jile, on the other hand, represents a physical device that transmits data in a character-based
manner. Examples of character devices are line printers, modems, and consoles. A physical
device may have both block and character device files representing it for different access

130

Chap. 6. File Types

methods. For example, a character device file for a hard disk is used to do raw (nonblocking)
data transfer between a process and the disk.

An application program may perform read and write operations on a device file in the
same manner as on a regular file, and the operating system will automatically invoke an
appropriate device driver function to perform the actual data transfer between the physical
device and the application.

Note that a physical device may have both a character and a block device file refer to it,
so that an application program may choose to transfer data with that device by either a char-
acter-based (via the character device file) or block-based (via the block device file) method.

A device file is created in UNIX via the mknod command. The follbwing UNIX com-
mand creates a character device file with the name /dev/cdsk0, and the major and minor num-
bers of the device file are 115 and 5, respectively. The argument c¢ specifies that the file to be
created is a character device file:

mknod /dev/cdsk c 115 5

A major device number is an index to a kernel table that contains the addresses of all
device driver functions known to the system. Whenever a process reads data from or writes
data to a device file, the kernel uses the device file’s major number to select and invoke a
device driver function to carry out the actual data transfer with a physical device. A minor
device number is an integer value to be passed as an argument to a device driver function
when it is called. The minor device number tells the device driver function what actual phys-
ical device it is talking to (a driver function may serve multiple physical device types), and
the I/O buffering scheme to be used for data transfer.

Device driver functions are supplied either by physical device vendors or by operating
system vendors. Whenever a device driver function is installed to a system, the operating sys-
tem kernel will require reconfiguration. This scheme allows an operating system to be
extended at any customer site to handle any new device type preferred by users.

A block device file is also created in UNIX by the mknod command, except that the
second argument to the mknod command will be b instead of c¢. The b argument specifies that
the file to be created is a block device file. The following command creates a /dev/bdsk block
device file with the major and minor device numbers of 287 and 101, respectively:

mknod /dev/bdsk b 287 101

In UNIX, mknod must be invoked through superuser privileges. Furthermore, it is con-
ventional in UNIX to put all device files in either the /dev directory or a subdirectory beneath
it.

131

Chap. 6. File Types

A FIFO file is a special pipe device file which provides a temporary buffer for two or
more processes to communicate by writing data to and reading data from the buffer. Unlike
regular files, however, the size of the buffer associated with a FIFO file is fixed to PIPE_BUF.
(PIPE_BUF and its POSIX.! minimum value, _POSIX_PIPE_BUF, are defined in the <lim-
its.h> header). A process may write more than PIPE_BUF bytes of data to a FIFO file, but it
may be blocked when the file buffer is filled. In this case the process must wait for a reader
process to read data from the pipe and make room for the write operation to complete.
Finally, data in the buffer is accessed in a first-in-first-out manner, hence the file is called a
FIFO.

The buffer associated with a FIFO file is allocated when the first process opens the
FIFO file for read or write. The buffer is discarded when all processes which are connected to
the FIFO close their references (e.g., stream pointers) to the FIFO file. Thus the data stored in
a FIFO buffer is temporary; they last as long as there is one process which has a direct con-
nection to the FIFO file for data access.

A FIFO file may be created in UNIX via the mkfifo command. The following command
creates a FIFO file called /usr/prog/fifo_pipe if it does not exist:

mkfifo lust/prog/fifo_pipe

In some early versions of UNIX (e.g., UNIX System V.3), FIFO files were created via
the mknod command. The following UNIX command creates the /usr/prog/fifo_pipe FIFO
file if it does not exist:

mknod /usr/prog/fifo_pipe p

The UNIX System V.4 supports both the mknod and mkfifo commands, whereas BSD
UNIX supports only the mkfifo command to create FIFO files.

A FIFO file may be removed like any regular file. Thus FIFO files can be removed in
UNIX via the rm coramand.

Beside the above file types, BSD UNIX and UNIX System V.4 also define a symbolic
link file type. A symbolic link file contains a path name which references another file in
either the local or a remote file system. POSIX.1 does not yet support symbolic link file type,
although it has been proposed to be added to the standard in a future revision.

A symbolic link may be created in UNIX via the In command. The following command
creates a symbolic link /usr/mary/slink which references the file /usr/jose/original. The cat
command which follows will print the content of the /usr/jose/original file:

132

Chap. 6. ' The UNIX and POSIX File Systems

In -s /usr/fjose/original /usr/mary/slink
cat -n /usr/mary/slink

The path name referenced by a symbolic link may be depicted in UNIX via the Is -1
command on the symbolic link file. The following command will show that /usr/mary/slink is
a symbolic link to the /usr/jose/original file:

% Is -l /usr/mary/slink
sre=r--r-- 1 terry 20 Aug 20, 1994 slink -> Jusr/jose/original
%

It is possible to create a symbolic link to reference another symbolic link. When sym-
. bolic links are supplied as arguments to the UNIX commands vi, cat, more, head, tail, etc.,
these commands will dereference the symbolic links to access the actual files that the links
reference. However, the UNIX commands rm, mv, and chmod will operate only on the sym-
bolic link arguments directly and not on the files that they reference.

6.2 The UNIX and POSIX File Systems

Files in UNIX or POSIX systems are stored in a tree-like hierarchical file system. The
root of a file system is the root directory, denoted by the /" character. Each intermediate node
in a file system tree is a directory file. The leaf nodes of a file system tree are either empty
directory files or other types of files.

The absolute path name of a file consists of the names of all the directories, specified in
the descending order of the directory hierarchy, starting from */,” that are ancestors of the file.
Directory names are delimited by the “/” characters in a path name. For example, if the path
name of a file is /usr/xyz/a.out, it means that the file a.out is located in a directory called xyz,
and the xyz directory is, in turn, stored in the usr directory. Furthermore, the usr directory is
in the “/” directory.

A relative path name may consist of the «» and “..” characters. These are references to
the current and parent directories, respectively. For example, the path name ../../.login denotes
a file called .login, which may be found in a directory two levels up from the current direc-
tory. Although POSIX.1 does not require a directory file to contain “.” and *..” files, it does
specify that relative path name. with “7and “..” characters be interpreted in the same manner
as in UNIX.

A file name may not exceed NAME_MAX characters, and the total number of charac-
ters of a path name may not exceed PATH_MAX. The POSIX. I -defined minimum values for

133

Chap. 6. The UNIX and POSIX File Attributes

NAME_MAX and PATH_MAX are _POSIX_NAME_MAX and _POSIX_PATH_MAX,
respectively. These are all defined in the <limits.h> header.

Furthermore, POSIX.1 specifies the following character set is to be supported by all
POSIX.I-compliant operating systems as legal file name characters. This means application
programs that are to be ported to POSIX.1 and UNIX systems should manipulate files with
names in the following character set only:

AtoZ atoz Oto9

The path name of a file is called a hard link. A file may be referenced by more than one
path name if a user creates one or more hard links to the file using the UNIX /n command.
For example, the following UNIX command creates a new hard link /usr/prog/new/n1 for the
file /usr/foo/pathl. After the In command, the file can be referenced by either path name.

In /usr/ffoo/path1 /usr/prog/new/n1

Note that if the -s option is specified in the above command, the /usr/prog/n! will be a
symbolic link instead of a hard link. The differences between hard and symbolic links will be
explained in Chapter 7.

The following files are commonly defined in most UNIX systems, although they are not
mandated by POSIX.1: '

File Use

letc ’ Stores system administrative files and programs
letc/passwd Stores all user information

letc/shadow Stores user passwords (For UNIX System V only)
/etc/group Stores all group information

/bin Stores all the system programs like cat, rm, cp, etc.
/dev Stores all character and block device files
/usr/include Stores standard header files

/usr/lib Stores standard libraries _

/tmp Stores temporary files created by programs

6.3 The UNIX and POSIX File Attributes

Both UNIX and POSIX.1 maintain a set of common attributes for each file in a file sys-
tem. These attributes and the data they specify are:

134

Chap. 6. The UNIX and POSIX File Attributes

Attribute Value meaning

file type Type of file

access permission The file access permission fcr owner. group, and
. others

Hard link count Number of hard links of a file

uiD The file owner user ID

GID The file group ID

file size The file size in bytes

last access time The time the file was last accessed

last modify time The time the file was last modified

last change time The time the file access permission, UID, GID, or

hard link count was last changed
inode number The system inode number of the file
file system ID The file system ID where the file is stored

Most of the above information can be depicted in UNIX by the Is -l command on any
files.

The above attributes are essential for the kernel to manage files. For example, when a
user attempts to access a file, the kernel matches the user’s UID and GID against those of the
file to determine which category (user, group, or others) of access permission should be used
for the access privileges of the user. Furthermore, the last modification time of files is used by
the UNIX make utility to determine which source files are newer than their corresponding
executable files and require recompilation.

Although the above information is stored for all file types, not all file types make use of
the information. For example, the file size attribute has no meaning for character and block

device files.

In addition to the above attributes, UNIX systems also store the major and minor device
numbers for each device file. In POSIX.1, the support of device files is implementation-
dependent; thus, it does not specify major and minor device numbers as standard attributes
for device files.

All the above attributes are assigned by the kernel to a file when it is created. Some of
these attributes will stay unchanged for the entire life of the file, whereas others may change
as the file is being used. The attributes that are constant for any file are:

» File type
« File inode number

135

Chap. 6. inodes in UNIX System V

* File system ID
* Major and minor device number (for device files on UNIX systems only)

The other attributes are changed by the following UNIX commands or system calls:

UNIX command System call Attributes changed

chmod chmod Changes access permission, last change time
chown chown Changes UID, last change time

chgrp chown Changes GID, last change time

touch utime Changes last access time, modification time
In link Increases hard link-count

m unlink Decreases hard link count. If the hard link

count is zero, the file will be removed from
the file system

vi, emac Changes file size, last access time, last modi-
fication time '

6.4 Inodes in UNIX System V

Two of the file attributes which were mentioned but not explained in the above are the
inode number and the file system ID. One may also notice that file names are not part of the
attributes which an operating system keeps for files. This section will use UNIX System V as
the context to give answers to all these puzzles.

In UNIX System V, a file system has an inode table which keeps tracks of all files. Each
entry of the inode table is an inode record which contains all the attributes of a file, including
an unique inode number and the physical disk address where the data of the file is stored.
Thus if a kernel needs to access information of a file with an inode number of, say 15, it will
scan the inode table to find an entry which contains an inode number of 15, in order to access
the necessary data. Since an operating system may have access to multiple file systems at one
time (they are connected to the operating system via the mount system command, and each is
assigned an unique file system ID), and an inode number is unique within a file system only,
a file inode record is identified by a file system ID and an inode number.

An operating system does not keep the name of a file in its inode record, because the
mapping of file names to inode numbers is done via directory files. Specifically, a directory
file contains a list of names and their respective inode numbers for all files stored in that
directory. For example, if a directory foo contains files xyz, a.out, and xyz_inl, where xyz_inl
is a hard link of xyz, the content of the directory foo is shown in Figure 6.1 (most implemen-
tation-dependent data is omitted).

136

Chap. 6. . Application Program Interface to Files

To access a file, for example /ust/joe, the UNIX kernel always knows the “r’ directory
inode number of any process (it is kept in a process U-area and may be changed via the chdir
system call). It will scan the /" directory file (via the “/” inode record) to find the inode num-
ber of the usr file. Once it gets the usr file inode number, it checks that the calling process has
permission to search the usr directory and accesses the content of the usr file. It then looks for
the inode number of the joe file.

Whenever a new file is created in a directory, the UNIX kernel allocates a new entry in
the inode table to store the information of the new file. Moreover, it will assign a unique
inode number to the file and add the new file name and inode number to the directory file that
contains it.

inode number file name
115
89
201 xyz
346 a.out
201 xyz_inl
Figure 6.1 A sample directory file content

Inode numbers and file system IDs are defined in POSIX.1, but the uses of these
attributes are implementation-dependent. Inode tables are kept in their file systems on disk,
but the UNIX kernel maintains an in-memory inode table to contain a copy of the recently
accessed inode records.

6.5 Application Program Interface to Files

Both UNIX and POSIX sysiems provide an application interface similar to files, as fol-
lows:

« Files are identified by path names

o Files must be created before they can be used. The UNIX commands and corre-
sponding system calls to create various types of files are:

137

Chap. 6. Application Program Interface to Files

File type UNIX command UNIX and POSIX.1 system call

Regular files vi, ex, etc. open, creat
Directory files mkdir mkdir, mknod
FIFO files mkfifo mkfifo, mknod
Device files mknod mknod
Symbolic links In-s symlink

* Files must be opened before they can be accessed by application programs. UNIX
and POSIX.1 define the open API, which can be used to open any files. The open
function returns an integer file descriptor, which is a file handle to be used in other
system calls to manipulate the open file

* A process may open at most OPEN_MAX files of any types at any one time. The
OPEN_MAX and its POSIX.1-defined minimum value _POSIX_OPEN_MAX are
defined‘in the <limits.h> header

* The read and write system calls can be used to read data from and write data to
opened files

* File attributes can be queried by the szat or fstat system call

* File attributes can be changed by the chmod, chown, utime, and link system calls

* File hard links can be removed by the unlink system call

To facilitate the query of file attributes by application programs, UNIX and POSIX.1
define a struct stat data type in the <sys/stat.h> header. A struct staf record contains all the
user-visible attributes of any file being queried, and it is assigned and returned by the stat or
JSstat function. The POSIX.1 declaration of the struct stat type is:

struct stat

{
dev_t st_dev; /* file system ID */
ino_t st_ino; /* File inode number */

mode_t st_mode; /* Contains file type and access flags */
nlink_t st_nlink; /* Hard link count */

uid_t st_uid; /* File user ID */

gid_t st_gid; /* File group ID */

dev_t st_rdev; /* Contains major and minor aevice numbers */
off_t st_size; /* File size in number of bytes */

time_t st_atime; /* Last access time /
time_t st_mtime; /* Last modification time */
time_t st_ctime; /* Last status change time */

138

Chap. 6. UNIX Kernel Support for Files

If the path name (or tile descriptor) of a symbolic link file is passed as an argument to a
stat (or fstar) system call, the function will resolve the link reference and show the attributes
of the actual file to which the link refers. To query the attributes of a symbolic link file itself,
one can use the [stat system call instead. Because symbolic link files are not yet supported by
POSIX.1, the Istat system call is also not a POSIX.1 standard.

6.6 UNIX Kernel Support for Files

In UNIX System V.3, the kernel has a file table that keeps track of all opened files in the
system. There is also an inode table that contains a copy of the file inodes most recently
accessed.

When a user executes a command, a process is created by the kernel to carry out the
command execution. The process has its own data structure which, among other things, is a
file descriptor table. The file descriptor table has OPEN_MAX entries, and it records all files
opened by the process. Whenever the process calls the open function to open a file for read
and/or write, the kernel will resolve the path name to the file inode. If the file inode is not
found or the process lacks appropriate permissions to access the inode data, the open call fails
and returns a -1 to the process. If, however, the file inode is accessible to the process, the ker-
nel will proceed to establish a path from an entry in the file descriptor table, through a file
table, onto the inode for the file being opened. The process for that is as follows:

1. The kernel will search the process file descriptor table and look for ihe first unused
entry. If an entry is found, that entry will be designated to reference the file. The index
to the entry will be returned to the process (via the return value of the open function) as
the file descriptor of the opened file.

2. The kernel will scan the file table in its kernel space to find an unused entry that can be
assigned to reference the file.

If an unused entry is found, the following events will occur:

a. The process’s file descriptor table entry will be set to point to this file table entry.

b. The file table entry will be set to point to the inode table entry where the inode
record of the file is stored. _

c. The file table entry will contain the current file pointer of the open file. This is an
offset from the beginning of the file where the next read or write operation will
occur .

d. The file table entry will contain an open mode that specifies that the file is opened
for read-only, write-only, or read and write, etc. The open mode is specified from
the calling process as an argument to the open function call.

e. The reference count in the file table entry is set to 1. The reference count keeps

139

Chap. 6. UNIX Kernel Support for Files

track of how many file descriptors from any process are referencing the entry.

f. The reference count of the in-memory inode of the file is increased by 1. This count
specifies how many file table entries are pointing to that inode.

If either (1) or (2) fails, the open function will return with a -1 failure status, and no file
descriptor table or file table entry will be allocated.

Figure 6.2 shows a process’s file descriptor table, the kernel file table, and the inode
table after the process has opened three files: xyz for read-only, abc for read-write, and abc
again for write-only.

file table inode table

file descriptor table

kernel space

re=1 *
rc=1| Xxyz

/ rc=2| abc

Process Space

rc = reference count
r = read-only.
™w = read-write

W = write-only Figure 6.2 Data Structure for File Manipulation

Note that the reference count of an allocated file table entry is usually 1, but a process
may use the dup (or dup2) function to make multiple file descriptor table entries point to the
same file table entry. Alternatively, the process may call the fork function to create a child
process, such that the child and parent process file table entries are pointing to corresponding
file table entries at the same time. All these will cause a file table entry reference count to be
larger than 1. The dup, dup2, and fork functions and their uses will be explained in more
detail in Chapter 8.

The reference count in a file inode record specifies how many file table entries are
pointing to the file inode record. If the count is not zero, it means that one or more processes
are currently opening the file for access.

140

Chap. 6. UNIX Kernel Support for Files

Once an open call succeeds, the process can use the returned file descriptor for future
reference. Specifically, when the process attempts to read (or write) data from the file, it will
use the file descriptor as the first argument to the read (or write) system call: The kernel will
use the file descriptor to index the process’s file descriptor table to find the file table entry of
the opened file. It then checks the file table entry data to make sure that the file is opened with
the appropriate mode to allow the requested read (or write) operation.

If the read (or write) operation is found compatible with the file’s open mode, the ker-
nel will use the pointer specified in the file table entry to access the file’s inode record (as
stored in the inode table). Furthermore, it will use the file pointer stored in the file table entry
to determine where the read (or write) operation should occur in the file. Finally, the kernel
checks the file’s file type in the inode record and invokes an appropriate driver function to ini-
tiate the actual data transfer with a physical device.

If a process calls the Iseek system call to change the file pointer to a different offset for
the next read (or write) operation, the kernel will use the file descriptor to index the process
file descriptor table to find the pointer to the file table entry. The kernel then accesses the file
table entry to get the pointer to the file’s inode record. It then checks that the file is not a char-
acter device file, a FIFO file, or a symbolic link file, as these files allow only sequential read
and write operations. If the file type is compatible with Iseek, the kernel will change the file
pointer in the file table entry according to the value specified in the Iseek arguments.

When a process calls the close function to close an opened file, the sequence of events
are as follows:

1. The kernel sets the corresponding file descriptor table entry to be unused.

2. It decrements the reference count in the corresponding file table entry by 1. If the refer-
ence count is still non-zero, go to 6.

3. The file table entry is marked as unused.

4. The reference count in the corresponding file inode table entry is decrement by one. If
the count is still nonzero, go to 6.

5. If the hard-link count of the inode is not zero, it returns to the caller with a success sta-
tus. Otherwise it marks the inode table entry as unused and deallocates all the physical

disk storage of the file, as all the file path names have been removed by some process.

6. It returns to the process with a 0 (success) status.

141

Chap. 6. Relationship of C Stream Pointers and File Descriptors

6.7 Relationship of C Stream Pointers and File
Descriptors ‘

C stream pointers (FILE*) are allocated via the fopen C function call. A stream pointer
1s more efficient to use for applications doing extensive sequential read from or write to files,
as the C library functions perform I/O buffering with streams. On the other hand. a file
descriptor, allocated by an open system call, is more efficient for applications that do frequent
random access of file data, and IO buffering is not desired. Another difference between the
two is stream pointers is supported on all operating systems, such as VMS, CMS, DOS, and
UNIX, that provide C compilers. File descriptors are used only in UNIX and POSIX.1-com-
pliant systems; thus, programs that use stream pointers are more portable than are those using
file descriptors.

To support stream pointers, each UNIX process has a fixed-size stream table with
OPEN_MAX entries. Each entry is of type FILE and contains working data from an open
file. Data stored in a FILE record includes a buffer for /O data bufferiag, the file I/O error
status, and an end-of-file flag, etc. When fopen is called, it scans the calling process FILE
table to find an unused entry, then assigns this entry to reference the file and returns the
address of this entry (FILE*) as the stream pointer for the file. Furthermore, in UNIX, the
Jopen function calls the open function to perform the actual file opening, and a FILE record
contains a file descriptor for the open file. One can extract the file descriptor associated with a
stream pointer via the fileno macro, which is declared in the <stdio.h> header:

int fileno (FILE* stream_pointer);

Thus, if a process calls fopen to open a file for access, there will be an entry in the process
FILE table and an entry in the process’s file descriptor table being used to reference the file. If
the process calls open to open the file, only an entry in the process’s file descriptor table is
assigned to reference the file. However, one can convert a file descriptor to a stream pointer
via the fdopen C library function:

FILE* fdopen (int file_descriptor, char * open_mode),

The fdopen function has an action similar to the fopen function, namely, it assign a process
FILE table entry to reference the file, records the file descriptor value in the entry, and returns
the address of the entry to the caller.

After either the fileno or fdopen call, the process may reference the file via either the
stream pointer or the file descriptor. Other C library functions for files also rely on the operat-

142

Chap. 6. Directory Fiies

ing system APIs to perform the actual functions. The following lists some C library functions
and the underlying UNIX APIs they use to perform their functions:

C Library function UNIX system call used
fopen open

fread, fgetc, fscanf, fgets read

fwrite, fputc, fprintf, fputs write

fseek, ftell, frewind Iseek

fclose ciose

6.8 Directory Files

A directory is a record-oriented file. Each record contains the information of a file
residing in that directory The record data type is struct dirent in UNIX System V and
POSIX.1, and struct direct in BSD UNIX. The record content is implementation-dependent,
but in UNIX and POSIX systems they all contain two essential member fields: a file name
and an inode number. The usage of directory files is to map file names to their corresponding
inode numbers so that an operating sysiem can resolve any file path name to locate its inode
record.

Although an application can use the open, reud, write, Iseek, and close system calls to
manipulate directory files, UNIX and POSIX.1 define a set of portable functions to open,
browse, and close directory files. They are built on top of the open, read, write, and close sys-
tem calls and are defined in <dirent.h> for UNIX System V and POSIX.1-compliant systems
or in <sys/dir.h> for BSD UNIX:

Directory function Purpose

opendir Opens a directory file

readdir Reads the next record from file
closedir Closes a directory file

rewinddir Sets file pointer to beginning of file

The opendir function returns a handle of type DIR*. It is analogous to the FILE* han-
dle for a C stream file. The handle is used in the readdir, rewinddir, and closedir function
calls to specify which directory file to manipulate.

Besides the above functions, UNIX systems-also define the telldir and seekdir func-
tions for random access of different records in a directory file. These functions are not
POSIX.1 standard, and they are analogous to the ftell and fseek C library functions, respec-
tively.

143

Chap. 6. Hard and Symbolic Links

If a process adds or deletes a file in a directory file while another process has opened
the file via the opendir, it is implementation-dependent as to whether the latter process will
see the new changes via the readdir function. However, if the latter process does a rewinddir
and then reads the directory via the readdir, according to POSIX.1, it should read the latest
content of the directory file.

6.9 Hard and Symbolic Links

A hard link is a UNIX path name for a file. Most UNIX files have only one hard link.
However, users may create additional hard links for files via the In command. For example.
the following command creates a new link call /usr/joe/book.new for the file /usr/mary/
Sun.doc:

In /usr/mary/fun.doc /ust/joe/book.new

After the above command, users may refer to the same file by either /usr/joe/book.new or /
usr/mary/fun.doc.

Symbolic links can be created in the same manner as hard links, except that you must
specify the -s option to the In command. Thus, using the above example, you can create /usr/
Jjoe/book.new as a symbolic link instead of a hard link with the following command:

In -s /usr/mary/fun.doc lust/joe/book.new

Symbolic links or hard links are used to provide alternative means of referencing files.
For example, you are at the /usr/jose/proj/doc directory, and you are constantly browsing the
file /usr/include/sys/unistd.h. Thus, rather than specifying the full path name /usr/include/sys/
unistd.h every time you reference it, you could define a link to that file as follows:

In /usrfinclude/sys/unistd.h uniref

From now on, you can refer to that file as uniref. Thus links facilitate users in referencing
files.

In differs from the cp command in that cp creates a duplicated copy of a file to another

file with a different path name, whereas /n primarily creates a new directory entry to refer-
ence a file. For example, given the following command:

in /usr/jose/abc /ust/mary/xyz

the directory files /usr/jose and /usr/mary will contain:

144

Chap. 6. Hard and Symbolic Links

inode number filename inode number filename
s . 515.
89 . 989
201 abe 201 |
346 a.out 146 fun.c
/usr/jose | /usr/mary

Note that both the /usr/jose/abc and /usr/mary/xyz refer to the same inode number, 201.
Thus there is no new file created. If, however, we use the In -s or the cp command to create
the /usr/mary/xyz file, a new inode will be created, and the directory files of /usr/jose and /
usr/mary will look like the following:

inode number file name - inode number _filg name_
115 i 515
89 . 989
201 abc 345 xyz
346 a.out 146 fun.c
Jusr/jose t /usr/mary

If the /usr/mary/xyz file was created by the cp command, its data content will be identi-
cal to that of /usr/jose/abc, and the two files will be separate objects in the file system. How-
ever, if the /usr/mary/xyz file was created by the In -s command, then the file data will consist
only of the path name /usr/mary/abc.

Thus, In helps save disk space over cp by not creating duplicated copies of files. More-
over, whenever a user makes changes to a link (hard or symbolic) of a file, the changes are
visible from all the other links of the file. This is not true for files created by cp, as the dupli-
cated file is a separate object from the original.

Hard links are used in all versions of UNIX. The limitations of hard links are:

* Users cannot create hard links for directories, unless they have superuser (rodt)
privileges. This is to prevent users from creating cyclic links in a ﬁle system. An
example of a cyclic link is like the following command:

In /usr/jose/text/unix_link /usr/jose

145

Chap. 6. Summary

If this command succeeds, then whenever a user does a Is -R /usr/jose, the Is
command will run into an infinite loop in displaying, recursively, the subdirec-
tory tree of /usr/jose. UNIX allows the superuser to create hard links on directo-
ries with the assumption that a supervisor will not make this kind of mistake

Users cannot create hard links on a file system that references files on a different
system. This is because a hard link is just a directory entry (in a directory file
that stores the new link) to reference the same inode number as the original link,
but inode numbers are unique only within a file system (hard links cannot be
.used to reference files on remote file systems)

To overcome the above limitations, BSD UNIX invented the symbolic link concept. A
symbolic link can reference a file on any file system because its data is a path name,
and an operating system kemel can resolve path names to locate files in either local or
remote file systems. Furthermore, users are allowed to create symbolic links to directo-
ries, as the, kemel can detect cyclic directories caused by symbolic links. Thus, there
will be no infinite loops in directory traversal. Symbolic links are supported in the
UNIX System V.4, but not by POSIX.1.

The following table summarizes the differences between symbolic and hard links:

Hard Link Symbolic Link
Does not create a new inode Create a new inode
Can not link directories, unless this is Can link directories
done by root
Can not link files across file systems Can link files across file systenis
Increase the hard link count of the linked Does not change the hard link count of
inode the linked inode

6.10 Summary

This chapter describes the UNIX and POSIX file systems and the different file types in
the systems. It also depicts how these various files are created and used. Furthermore, the
UNIX System V system-wide and per-Process data structures that are used to support file
manipulation and the application program interfaces for files are covered. The objective of
this chapter is to familiarize readers with the UNIX file structures so that they can understand
why the UNIX and POSIX system calls were created, how they work, and what their applica-
tions for users are.

The next chapter will describe the UNIX and POSIX file APIs in more detail.

146

CHAPTERh

UNIX File APIs

This chapter describes how the UNIX and POSIX applications interface with files.
After reading this chapter, readers should be able to write programs that perform the follow-
ing functions on any type of files in a UNIX or POSIX system:

o Create files

¢ Open files

o Transfer data to and from files
* Close files

+ Remove files

* Query file attributes

« Change file attributes

« Truncate files

To illustrate the application of UNIX and POSIX.1 APIs for files, some C++ programs
are depicted to show the implementation of the UNIX commands Is, my, chmod, chown, and
touch based on these APIs. Furthermore, this chapter defines a C++ class called file. This file
class inherits all the properties of the C++ fstream class, and it has additional member func-
tions to create objects of any file type, as well as to display and change file object attributes.

Readers are assumed to have read the last chapter to become familiar with the UNIX
and POSIX file structures, as they are fundamental to a sound understanding of the use and
application of the file APIs described in this chapter.

147

&

General File APIs

General File APls

s explained in the last chapter, files in a UNIX or POSIX system may be one of the

.ing types:

* Regular file

* Directory file

* FIFO file

¢ Character device file
* Block device file

* Symbolic link file

There are special APIs to create these different types of files. These APIs will be
described in later sections. However, there is a set of generic APIs that can be used to manip-
ulate more than one type of files. These APIs are:

API
open
read
write
Iseek
close
stat, fstat
chmod
chown
utime

link
unlink
umask

Use

Opens a file for data access -

Reads data from a file

Writes data to a file

Allows random access of data in a file
Terminates the connection to a file
Queries attributes of a file

Changes access permission of a file
Changes UID and/or GID of a file

Changes last modification and access time stamps
of a file

Creates a hard link to a file
Deletes a hard link of a file
Sets default file creation mask

These general APIs are explained as follows.

71.1 open

"The open function establishes a connection between a process (a process is an apphca—
tion program under execution) and a file. If can be used to create brand new files. Further-
more,jafter a file is created any process can call the open function to get a file descriptor to
refer to the file. The file descriptor is used in the read and write system calls to access the file

1
content. A

148

Chep. 7.

[_ The prototype of the open function is:

General Flie APls

#include <sys/types..h>
#include <fcntl.h>

int open (const char *path_name, int access_mode, mode_t permission %

h‘he first argument path_name is the path name of a file. This may be an absolute path
name (a character string begins with the */* character) or a relative path name (a character
string does not begin with the */” character). If a given path_name is a symbolic link, the
function will resolve the link reference (and recursively, if the symbolic link refers to another
symbolic link) to a nonsymbolic link file to which the link refers.

The second argument access_mode is an integer value that specifies how the file is to be
accessed by the calling process. The access_mode value should be one of the following man-
ifested constants as defined in the <fcntl.h> header:

Access mode flag
O_RDONLY
O_WRONLY
O_RDWR

Use

Opens the file for read-only

Opens the file for write-only

Opens the file for read and write j

Furthermore, one or more of the following modifier flags can be specified by bitwise-ORing
them with one of the above access mode flags to alter the access mechanism of the file:

(Access modifier flag
O_APPEND
O_CREAT
O_EXCL

O_TRUNC
O_NONBLOCK

O_NOCTTY

Use

Appends data to the end of the file

Creates the file if it does not exist

Used with the O_CREAT flag only. This flag
causes open to fail if the named file already exists
If the file exists, discards the file content and sets
the file size to zero bytes

Specifies that any subsequent read or write on the:
file should be nonblocking

Specifies not to use the named terminal device file
as the calling process control terminal J

149

Chap. 7. General File APls

To illustrate the use of the above flags, the following example statement opens a file
called /usr/xyz/textbook for read and write in append mode:

int fdesc = open (“/usr/xyzitextbook”,O_RDWRIO_APPEND, 0),

If a file is to be opened for read-only, the file should already exist and no other modifier
flags can be used.

If a file is opened for write-only or read-write, any modifier flags can be specified.
However, O_APPEND, O_TRUNC, O_CREAT, and O_EXCL are applicable to regular files
only, whereas O_NONBLOCK is for FIFO and device files only, and O_NOCTTY is for ter-
minal device files only.

The O_APPEND flag specifies that data written to a named file will be appended at the
end of the file. If this is not specified, data can be written to anywhere in the file.

The O_TRUNC flag specifies that if a named file already exists, the open function
should discard its content. If this is not specified, current data in the file will not be altered by
the open function.

The O_CREAT flag specifies that if a named file does not exist, the open function
should create it. If a named file does exist, the O_CREAT flag has no effect on the open func-
tion. However, if the named file does not exist and the O_CREAT file is not specified, open
will abort with a failure return status. The O_EXCL flag, if used, must be accompanied by the
O_CREAT flag. When both the O_CREAT and O_EXCL flags are specified, the open func-
tion will fail if the named file exists. Thus, the O_EXCL flag is used to ensure that the open
call creates a new file.

The O_NONBLOCK flag specifies that if the open and any subsequent read or write
function calls on a named file will block a calling process, the kernel should abort the func-
tions immediately and return to the process with a proper status value. For example, a process
is normally blocked on reading an empty pipe (pipe is described in Section 7.5) or on writing
to a pipe that is full. The O_NONBLOCK ﬁag may be used to specify that such read and
write operations are nonblocking. In System V.3, O_NDELAY is defined instead of
O_NONBLOCK; the two flags have similar uses, but their behaviors are not identical. These
are covered in more detail in Section 7.5.

The O_NOCTTY flag is defined in POSIX.1. It specifies that if a process has no con-
trolling terminal and it opens a terminal device file, that terminal will not be the controlling
terminal of the process. If this flag is not set, it is implementation-dependent as to whether the
terminal will become the process controlling terminal. Note that in UNIX System V.3 where
the O_NOCTTY is undefined, if a process has no controlling terminal, the open call will
automatically establish the first terminal device file opened as the controlling terminal.

150

Chap. 7. General File APIs

The permission argument is required only if the O_CREAT flag is set in the
access_mode argument. It specifies the access permission of the file for its owner, group
member, and all other people. Its data type is int in UNIX System V (V.3 and earlier), and its
value is usually specified as an octal integer literal, such as 0764. Specifically, the left-most,
middle, and right-most digits of an octal value specify the access permission for owner,
group, and others, respectively. Furthermore, in each octal digit, the left-most, middle, and
right-most bits specify the read, write, and execute permission, respectively. The value of
each bit is either 1, which means a right is granted, or zero, for no such right. Thus, the 0764
value manes that the new file’s owner has read-write-execute permission, group members
have read-write permission, and others have read-only permission.

POSIX.1 defines the permission data type as mode_t, and its value should be con-
structed based on the manifested constants defined in the <sys/stat.h> header. These mani-
fested constants are aliases to the octal integer values used in UNIX System V. For example,
the 0764 permission value should be specified as:

S_IRWXU | S_IRGRP | S_IWGRP | S_IROTH

Actually, a permission value specified in an open call is modified by its calling process
umask value. An umask value specifies some access rights to be masked off (or taken away)
automatically on any files created by the process. A process umask is inherited from its par-
ent process, and its value can be queried or changed by the umask system call. The function
prototype of the umask APl is:

mode_t umask (mode_t new_umask);

The umask function takes a new umask value as an argument. This new umask value
will be used by the calling process from then on, and the function returns the old umask
value. For example, the following statement assigns the current umask value to the variable
old_mask, and sets the new umask value to “no execute for group” and *‘no write-execute for
others™:

mode_t old_mask = umask (S_IXGRP 1 S_IWOTH | S_IXOTH);

The open function takes its permission argument value and bitwise-ANDs it with the
one’s complement of the calling process umask value,. Thus, the final access permission to be
assigned to any new file created is: :

actual_permission = permission & ~umask_value

151

Chap. 7. General File APIs

Thus bits which are set in an umask value mean that the corresponding access rights are
to be taken off of any newly created files. For example, if open is called in System V.3 to cre-
ate a file called /usr/mary/show_ex with a permission of 0557, and the umask of the calling
process is 031, then the actual access permission assigned to the newly created file is:

actual_permission = 0557 & (~031) = 0546
The return value of the open function is -1 if the API fails and errmo contains an error
status value. If the API succeeds. the return value is a file descriptor that can be used to refer-

ence the file in other system calls. The file descriptor value should be between 0 and
OPEN_MAX-1, inclusively.

7.1.2 creat

The creat system call is used to create new regular files. Its prototype is:

#include <sys/types.h>
#include <unistd.h>

int creat (const char* path_name, mode_t mode);

The path_name argument is the path name of a file to be created. The mode argument is
the same as that for the open API. However, since the O_CREAT flag was added, the open
API can be used to both create and open regular files. Thus, the creat API has become obso-
lete. It is retained for backward-compatibility with early versions of UNIX. The creat func-
tion can be implemented using the open function as:

#define creat(path_name,mode) .
open (path_name, O_WRONLYIO_CREATIO_TRUNC, mode) |

7.1.3 | read

The read function fetches a fixed size block of data from a file referenced by a given
file descriptor. The function prototype of the read function is:

#include <sys/types.h>
#include <unistd.h>

ssize_t read (int fdesc, void* buf, size_t size); -

152

Chap. 7. General File APls

The first argument, fdesc, is an integer file descriptor that refers to an opened file. The
second argument, buf, is the address of a buffer holding any data read. The third argument,
size, specifies how many bytes of data are to be read from the file. The size_r data type is
defined in the <sys/types.h> header and should be the same as unsigned int.

Note that read can read text or binary files. This is why the data type of buf is a univer-
sal pointer (void*). For example, the following code fragment reads, sequentially, one or
more record of struct sample-typed data from a file called dbase:

| struct sample { int x; double y; char* z; } varX;
int fd = open (“dbase”, O_RDONLY);
while (read(fd,&varX,sizeof(varX)) > 0) _
/* process data stored in varX*/ |

The return value of read is the number of bytes of data successfully read and stored in
the buf argument. It should normally be equal to the size value. However, if a file contains less
than size bytes of data remaining to be read, the return value of read will be less than that of
size. Furthermore, if end-of-file is reached, read will return a zero value.

Because ssize_t is usually defined as int in the <sys/types.h> header, users should not
set size to exceed INT_MAX in any read function call. This ensures that the function return
value can reflect the actual number of bytes read.

If a read function call is interrupted by a caught signal (signals are explained in Chapter
9) and the operating system does not restart the system call automatically, POSIX.1 allows
two possible behaviors of the read function. The first one is the same as in UNIX System V.3,
where the read function will return a -1 value, errmo will be set to EINTR, and all the data
read in the call will be discarded (hence, the process cannot recover the data). The second
behavior is mandated by the POSIX.1 FIPS standard, which specifies that the read function
will return the number of bytes of data read prior to the signal interruption. This allows a pro-
cess to continue reading the file.

In BSD UNIX where the kernel automatically restarts any system call after a signal
interruption, the return value of read will be the same as that in a normal execution. In UNIX
System V.4, the user can specify, on a per-signal basis, whether the kernel will restart any sys-
tem call that is interrupted by each signal. Thus, the read function behavior may be similar to
that of BSD UNIX for restartable signals, or to that of either UNIX System V.3 or POSIX.1
FIPS systems for nonrestartable signals.

The read function may block a calling process execution if it is reading a FIFO or a
device file and data is not yet available to satisfy the read request. Users may specify the
O_NONBLOCK or O_NDELAY flags on a file descriptor to request nonblocking read opera-
tions on the corresponding file. The behavior of the read function on these special files will
be described in detailed in the FIFO and device file API sections.

153

Chap. 7. General File APls

7.1.4 write

The write function puts a fixed size block of data to a file referenced by a given file
descriptor. Its operation is opposite to that of the read function. Its prototype is:

#include <sys/types.h>
#include <unistd.h>

ssize_t write (int fdesc, const void* buf, size_t size);

The first argument, fdesc, is an integer file descriptor that refers to an opened file. The
second argument, buf, is the address of a buffer which contains data o be written to) the file.
The third argument, size, specifies how many bytes of data are in the buf argument.

Like the read API, write can write text or binary files. This is why the data type of buf
is a universal pointer (void*). For example, the following code fragment writes ten records of
struct sample-typed data to a file called dbase2:

! struct sample { int x; double y; char* z; } varX[10];
~-int fd = open (“dbase2”, O_WRONLY);

/* initialize varX array here... */

write(fd, (void*)varX, sizeof varX);

The return value of write is the number of bytes of data successfully written to a file. It
should nonnally be equal to the size value. However, if the write will cause the file size to
exceed a system imposed limit or if the file system disk is full, the return value of write will
be the actual number of bytes written before the function was aborted.

The handling of signal interruption by the write function is the same as that for the read
function: If a signal arrives during a write function call and the operating system does not
restart the system call automatically, the write function may either return a -1 value and set
errno to EINTR (the System V method) or return the number of bytes of data written prior to
the signal interruption. The latter behavior is mandated by the POSIX.1 FIPS standard.

Like the read function, in UNIX System V.4 a user can specify, on a per-signal basis,
whether the kernel will restart any system call that is interrupted by each signal. Thus, the
write function behavior may be similar to that of BSD UNIX for restartable signals (and the
write function return value is the same as that in a normal execution) or to that of either
UNIX System V.3 or POSIX.1 FIPS systems for nonrestartable signals.

154

Chap. 7. General File APls

Finally, the write function may perform nonblocking operation if the O_NONBLOCK

or O_NDELAY flags are set on the fdesc argument to the function. This is the same for the
read function.

7.1.5 close

“The close function disconnects a file from a process. The function prototype of the
close function is:

#include <unistd.h>

int close (int fdesc);

-

The argument fdesc is an integer file descriptor that refers to an opened file. The return
value of close is zero if the call succeeds, or -1 if it fails, and errno contains an error code.

The close function frees unused file descriptors so that they can be reused to reference
other files. This is important, as a process may open up to OPEN_MAX files at any one time,

and the close function allows a process to reuse file descriptors to access more than
OPEN_MAX files in the course of its execution.

_ Furthermore, the close function will deallocate system resources (e.g., file table entries
and memory buffer allocated to hold read/write file data) that are dedicated to support the
operation of file descriptors. This reduces the memory requirement of a process.

L_If a process terminates without closing all the files it has opened, the kernel will close
those files for the proces“é\./\

The iostream class defines a close member function to close a file associated with an
jostream object. This member function may be implemented using the close API as follows:

#include <iostream.h>
#include <sys/types.h>
#include <unistd.h>

int iostream::close() {return close(this->fileno());}

155

Chap. 7. General File APls

7.1.6 fentl

‘ " The Jfentl function helps a user to query or set access control flags and the close-on-exec
flag-of any file descriptor. Users can also use fentl to assign multiple file descriptors to refer-
ence the same file. The prototype of the fcntl function is:

#include <fentl.h>
int fentl (int fdesc, int cmd, ...);

The cmd argument specifies which operations to perform on a file referenced by the
fdesc argument. A third argument value, which may be specified after cmd, is dependent on
the actual cmd value. The possible cmd values are defined in the <fentl.h> header. These val-
ues and their uses are:

cmd value Use

F_GETFL Returns the access control flags of a file descriptor
fdesc

F_SETFL Sets or clears access control flags that are specified

in the third argument to fentl. The allowed access
control flags are O_APPEND and O_NONBLOCK
(or O_NDELAY in non-POSIX-compliant UNIX)

F_GETFD Returns the close-on-exec flag of a file referenced
by fdesc. If a return value is zero, the flag is off;
otherwise, the return value is nonzero and the flag
is on. The close-on-exec flag of a newly opened file
is off by default

F_SETFD Sets or clears the close-on-exec flag of a file
descriptor fdesc. The third argument to fenrl is an
integer value, which is 0 to clear the flag, or 1 to set
the flag

F_DUPFD Duplicates the file descriptor fdesc with another
file descriptor. The third argument to fenrl is an
integer value which specifies that the duplicated
file descriptor must be greater than or equal to that
value. The return value of fcnzl, in this case, is the
duplicated file descriptor .

The fentl function is useful in changing the access control ﬂdg of a file descriptor. For
‘example, after a file is opened for blocking read-write access and the procass needs to change
the access to nonblocking and in write-append mode, it can call fentl on the file’s descriptor
as:

156

Chap. 7. General File APIs

int cur_flags = fentl(fdesc, F_GETFL);
int rc = fentl (fdesc, F_SETFL, cur_flag | O_APPEND | O_NONBLOCK);,

The close-on-exec flag of a file descriptor specifies that if the process that owns the
descriptor calls the exec API to execute a different program, the file descriptor should be
closed by the kernel before the new program runs (if the flag is on) or not (if the flag is off).
The exec API and the close-on-exec flag are explained in more detail in Chapter 8. The fol-
lowing example reports the close-on-exec flag of a file descriptor fdesc, sets it to on after-
ward:

cout << fdesc << “ close-on-exec: * << fenti(fdesc, F_GETFD) << end!;
(void)fentl(fdesc, F_SETFD, 1), // turn-on close-on-exec fiag

The fentl function can also be used to duplicate a file descriptor fdesc with another file
descriptor. The results are two file descriptors referencing the same file with the same access
mode (read and/or write, blocking or nonblocking access, etc.) and sharing the same file
pointer to read or write the file. This is useful in the redirection of the standard input or output
to reference a file instead. For example, the following statements change the standard input of
a process to a file called FOO:

int fdesc = open(“FO0”, O_RDONLY); // open FOO for read

close(0); // close standard input
_if (fentl(fdesc,F_DUPFD. 0)==-1) perror(“fentl”); // stdin from FOO now

char buf[256]; .

int rc = read(0,buf,256); // read data from FOO

t

The dup and dup?2 functions in UNIX perform the same file duplication function as
fentl. They can be implemented using fentl as:

#define dup(fdesc) fentl(fdesc,F_DUPFD,0)
#define dup2(fdesct, fd2) close(fd2), fenti(fdesc,F_DUPFD,fd2)

The dup function duplicates 4 file descriptor fdesc with the lowest unused file descrip-
tor of a calling process. The dup2 function will duplicate a file descriptor fdesc using a fd2
file descriptor, regardless of whether fd2 is used to reference another file.

File duplication and standard input or output redirection are described in more detail in
the next chapter.

The return value of fentl is dependent on the cmd value, but it is -1 if the function fails.
Possible failures may be due to the specification of an invalid fdesc or cmd.

157

Chap. 7. General File APls

7.1.7 Iseek

The read and write system calls are always relative to the current offset within a file.
The Iseek system call can be used to change the file offset to a different value. Thus, Iseek
allows a process to perform random access of data on any opened file. Lseek is incompatible
with FIFO files, character device files, and symbolic link files.

The prototype of the Iseek function is:

#include <sys/types.h>
#include <unistd.h>

off_t Iseek (int fdesc, off_t pos, int whence);

The first argument, fdesc, is an integer file descriptor that refers to an opened file. The
second argument, pos, specifies a byte offset to be added to a reference location in deriving
the new file offset value. The reference location is specified by the whence argument. The
possible values of whence and the corresponding file reference locations are:

whence value Reference location
. SEEK_CUR Current file pointer address
" SEEK_SET The beginning of a file
SEEK_END The end of a file ™

i
o

The SEEK_CUR, SEEK_SET, and SEEK_END are defined in the <unistd.h> header. Note
that it is illegal to specify a negative pos value with the whence value set to SEEK_SET, as
this will cause the function to assign a negative file offset. Furthermore, if an Iseek call will
result in a new file offset that is beyond the current end-of-file, two outcomes possible are: If
a file is opened for read-only, Iseek will fail; if, however, a file is opened for write access,
Iseek will succeed, and it will extend the file size up to the new file offset address. Further-
more, the data between the end-of-file and the new file offset address will be initialized with
NULL characters.

The return value of Iseek is the new file offset address where the next read or write
operation will occur, or -1 if the Iseek call fails.

The iostream class defines the tellg and seekg functions to allow users to do random
data access of any iostream object. These functions may be implemented using the Iseek API
as follows:

#include <iostream.h>
#include <sys/types.h>

158

Chap. 7. General File APls
#include <unistd.h>
streampos iostream::telig()

return (streampos)lseek(this->fileno(), (off_t)0, SEEK_CUR);

}
iostream&iostream::seekg(streampos pos, seek_dir ref_ loc)
{
if (ref_loc == ios::beg)
(void)lseek(this->fileno(), (off_t)pos, SEEK_SET);
else if (ref_loc == ios::cur)
(void)lseek(this->fileno(), (off_t)pos, SEEK_CUR);
eise if (ref_loc == ios::end)
(void)lseek(this->fileno(), (off_t)pos, SEEK_END);
return *this;
}

The iostream::tellg simply calls Iseek to return the current file pointer associated with
an iostream object. The file descriptor of an iostream object is obtained from the fileno mem-
ber function. Note that streampos and off_t are the same as the long data type.

The iostream::seekg also relies on Iseek to alter the file pointer associated with an ios-
tream object. The arguments to iostream: :seekg are a file offset and a reference location for
the offset. There is a one-to-one mapping of the seek_dir values to the whence values used by
Iseek:

seek_dir value Iseek whence value
ios::beg SEEK_SET
jos:cur SEEK_CUR

ios::end SEEK_END

Thus, the iostream::seekg function simply converts a seek_dir value to an Iseek whence
value and calls Iseek to change an iostream object file pointer according to the pos value. The
file descriptor of an iostream object is obtained from the fileno member function.

7.1.8 link

The link function creates a new link for an existing file. This function does not create a
new file. Rather, it creates a new path name for an existing file.

The prototype of the link function is:

159

Chap. 7. General File APls

#include <unistd.h>

int Zink (const char* cur_link, const char* new_link);

The first argument, cur_link, is a path name of an existing file. The second argument,
new_link, is a new path name to be assigned to the same file. If this call succeeds, the hard
link count attribute of the file will be increased by 1.

In UNIX, link cannot be used to create hard links across file systems. Furthermore, link
cannot be used on directory files unless it is called by a process that has superuser privileges.

The UNIX In command is implemented using the link API. A simple version of the In
program, that does not support the -s (for creating a symbolic link) option, is as follows:

- I*test_In.C */
#include <iostream.h>
#include <stdio.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
if (arge!=3) {
cerr << “usage: “ << argv[0] << “ <src_file> <dest_file>\n";
return O; .

}

if (flink (argv[1], argv[2})==-1) {
perror(“link”);
return 1;

| ,

return O;

}

7.1.9 unlink

The unlink function deletes a link of an existing file. This function decreases the hard
link count attributes of the named file, and removes the file name entry of the link from a
directory file. If this function succeeds, the file can no longer be reference by that link. A file
is removed from the file system when its hard link count is zero and no process has any file
descriptor referencing that file.

160

Chap.7. ‘ General File APls

The prototype of the unlink function is:

#include <unistd.h>
int unlink (const char® cur_link);

The argument cur_link is a path name that references an existing file. The return value
is 0 if the call succeeds or -1 if it fails. Some possible causes of failure may be that the
cur_link is invalid (no file exists with that name), the calling process lacks access permission
to remove that path name, or the function is interrupted by a signal.

In UNIX, unlink cannot be used to remove a directory file unless the calling process has
the superuser privilege.

ANSI C defines the remove function which does the similar unlink operation. Further-
more, if the argument to the remove function is an empty directory, it wi}l remove that direc-
tory. The prototype of the rename function is:

#include <stdio.h>
int rename (const char* old_path_name, const char’* new_path_name);

Both the link and the rename functions fail when the new link to be created is in a dif-
ferent file system (or disk partition) than the original file.

The UNIX mv command can be implemented using the link and unlink APIs. A simple
version of the mv program is as follows:

#include <iostream.h>
#include <unistd.h>
#include <string.h>

L

int main (int argc, char* argv(])
{
) if (arge!=3 Il !stremp(argv[1], argv[2]))
cerr << “usage: “ << argv[0] << * <old_link> <new_link>\n";
else if (link (argv([1], argv[2])==0)
return unlink(argv{1]);
return -1;

161

Chap. 7. General File APis

The above program takes two command line arguments: old_link and new_link. It first
checks that old_link and new_link are different path names; otherwise, the program will sim-
ply exit, as there is nothing to change. The program calls link to set up new_link as a new ref-
erence to old_link. If link fails, the program will return -1 as an error status; otherwise, it will
call unlink to remove the ¢!d_link, and its return value is that of the unlink call.

7.1.10 stat, fstat

The star and fstar functions retrieve the file attributes of a given file. The difference
between the two functions is that the first argument of stat is a file path name, whereas the
first argument of fstat is a file descriptor. The prototypes of the stat and fstat functions are:

“#include <sys/stat.h>
#include <unistd.h>

int stat (const char* path_name, struct stat* statv);
int fstat (const int fdesc, struct stat* statv);

The second argument to stat and fstat is the address of a struct stat-typed variable. The
struct stat data type is defined in the <sys/stat.h> header,. Its declaration, which is similar in
UNIX and POSIX.1, is as follows:

struct stat

{
dev_ts t_dev; /* file system ID */
ino_t st_ino; /* File inode number */

mode_t st_mode; /* Contains file type and access flags */
nlink_t st_nlink; /* Hard link count */

uid_t st_uid; /* File user ID */°

gid_t st_gid; /* File group 1D */

dev_t st_rdev; /* Contains major and minor device numbers */
off_t st_size; /* File size in number of bytes */

time_t st_atime; /* Last access time */
time_t st_mtime; /* Last modification time */
time_t- st _ctime; /* Last status change time */

|3

The return value of both functions is 0 if they succeed or -1 if they fail, and errmo con-
tains an error status code. Possible failures of these functions may be that a given file path
name (for stat) or file descriptor (for fstar) is invalid, the calling process lacks permission to
access the file, or the functions are interrupted by a signal.

162

Chap. 7 General File APis

If a path name argument specified to stat is a symbolic link file, stat will resolve the
link(s) and access the nonsymbolic link file that is being pointed at. This is the same behavior
as the open API. Thus, stat and fstat cannot be used to obtain attributes of symbolic link files
themselves. To remedy this problem, BSD UNIX invented the Istar APL. The Istat function
prototype is the same as that of stat:

int Istat (const char* path_name, struct stat* statv); '

Lstat behaves just like stat for nonsymbolic link files. However, if a path_name argument to
Istat is a symbolic link file, Istar will return the symbolic link file attributes, not the file it
refers to. Lstat is also available in UNIX Systern V.3 and V.4, but undefined by POSIX.1.

The UNIX Is command is implemented based on the star API. Specifically, the -
option of Is depicts the struct stat data of any file to be listed. The following test_Is.C pro-
gram emulates the UNIX Is -/ command:

/* test_Is.C: program to emulate the UNIX Is - command */
#include <iostream.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <pwd.h>

#include <grp.h>

static char xibi[10] = “rwxrwxrwx”,

#ifndef MAJOR

#define MINOR_BITS 8

#define MAJOR(dev) ((unsigend)dev >> MINOR_BITS)
#define MINOR(dev) (dev & MINOR_BITS)

#endif

/* Show file type at column 1 of an output line */
static void display_file_type (ostream& ofs, int st_mode)

switch (st_mode&S_IFMT) {

case S_IFDIR: ofs << ‘d’; return; /* directory file */

case S_IFCHR: ofs << ‘c’; return; /* character device file */
case S_IFBLK: ofs <<‘b’; return; /* block device file */
case S_IFREG: ofs <<, return; /* regular file */

case S_IFLNK: ofs << I’; return; /* symbolic link file */
case S_IFIFO: ofs << 'p’; return; /* FIFO file */

163

Chap. 7. General Fils APls

/" Show access perm for owner, group, others, and any special flags */
static void display_access_perm (ostream& ofs, int st_mode)
{

char amode[10];

for (int i=0, j= (1 << 8);i < 9; i++, j>>=1)

amodel[i] = (st_mode&j) ? xtbl[i] : *-’; /* set access perm */

if (st_mode&S_ISUID) amode|2] = (amode[2]=="x) ? ‘'S’ :‘s’;

if (st_mode&S_ISGID) amode[5] = (amode[5]=="x') ? ‘G’ :'g’;

if (st_mode&S_ISVTX) amode[8] = (amode[8]=="x") ?‘T": 't’;

ofs << amode << '

}

/* List attributes of one file */
static void long_list (ostreamé& ofs, char* path_name)
{

struct stat statv;

struct group*gr_p;

struct passwd*pw_p;

if (Istat(path_name,&statv)) {
cerr << “Invalid path name: “ << path_name << end|;
return;

}

display_file_type(ofs, statv.st_mode);
display_access_perm(ofs, statv.st_mode);

ofs << statv.st_nlink; /* display hard link count */
gr_p = getgrgid(statv.st_gid); /* GID to group name */
pw_p = getpwuid(statv.st_uid); /* convert UID to user name */

ofs <<'‘<<(pw_p->pw_name ? pw_p->pw_name : statv.st_uid)
<< ‘' << (gr_p->gr_name ? gr_gr_name : statv.st_gid) << ‘%

if ((statv.st_mode&S_IFMT) == S_IFCHR ||
(statv.st_mode&S_IFMT)==S_IFBLK)
ofs << MAJOR(statv.st_rdev) <<, << MINOR(statv.st_rdev);
else ofs << statv.st_size; /* show file size or major/minor no. */

ofs << ‘ ‘<< ctime(&statv.st_mtime); /* print last modification time */
ofs <<‘* << path_name << end}; /* show file name */

}

/* Main loop to display file attributes one file at a time */
int main (int argc, char* argv[])

{
if (argc==1)

164

Chap. 7. General File APIs

cerr << “usage: “ << argv[0] << “ <file path name> ...\n”;
else while (--argc >= 1) long_list(cout, *++argv),
return O;

}

The above program takes one or more file path names as arguments. For each path
name it calls long_list to display the attributes of the named file in the UNIX Is -/ format.
Specifically, each file attributes are depicted in one physical line with the following data:

+ The first field (column 1) is a one-character code to depict the file type .

« The second field (columns 2-4) has owner read, write, and execute access rights
« The third field (columns 5-7) has group read, write, and execute access rights

« The fourth field (columns 8-10) has other read, write, and execute access rights
« The fifth field is the file hard link count

» The sixth field is the file user name

 The seventh field is the file group name

« *The eighth field is the file size in number of bytes, or the major and minor device
numbers, if this is a character or block device file

« The ninth field is the file last modification time stamp
+ The tenth field is the file name

£
The st_mode variable in a struct stat record stores several attributes: file type, owner
access rights, group access rights, other access rights, a set-UID flag, a set-GID flag, and a
sticky bit. There are manifested constants defined in the <sys/stat.h> header to aid the extrac-
tion of these various fields, as shown in the above program.

The encoding of a file type to a single character code follows the UNIX Is -I conven-
tion: d stands for a directory file type, ¢ stands for a character device file type, b stands for a
block device file type, - stands for a regular file type, p stands for a FIFO file type, and [
stands for a symbolic link file type.

The access permission for any category of people is always depicted in the read, write,
and execute order, and by the , w and x characters, respectively. A - in place of any 7, w, or x
character means that there is no read, write, or execute right for a category of people.

The set-UID, set-GID, and sticky flags are UNIX-specific. If the set- UID flag of an exe-
cutable file is on, the effective user ID of any process created by executing that file will be the
same as the file user ID. Thus. if a file user ID is zero (the superuser ID in UNIX), the corre-
sponding process will have the superuser privileges. Similarly, if a file set-GID flag is on then
the effective group ID of any process created by executing that file will be the same as the file
group ID. The effective user ID and group ID of a process are used to determine the access
permission of the process to any file. Specifically, the kernel first checks a process effective

165

Chap. 7. General File APIs

user ID against a file user ID. If they match, the process will be given the file owner access
permission. If the process effective user ID does not match a file user ID but its effective
group ID matches that of the file, then the file group access rights are applied to the process.
Finally, if neither match, the “others” access permission will be used.

The set-UID and set-GID flags are useful on some UNIX programs, such as the
passwd. Processes of these programs need to have a superuser privilege to perform their jobs
(for passwd to alter the /etc/passwd or /etc/shadow file to change user password). Thus, by
setting the ser-UID flag of these programs, users who execute these programs can get their
work done as if the superuser were there to help them.

The effective user ID and effective group ID are also used when a process creates a file:
The file user ID will be assigned that of the process, and its group ID will be assigned in some
system-dependent means: In UNIX System V.3, the file group ID will be assigned that of the
process; but in BSD UNIX, the file group ID will be set to the group ID of the directory
which contains that file. POSIX.1 permits both System V.3 and BSD methods of assigning
file group ID. In UNIX System V.4, a new file group ID is assigned the group ID of the direc-
tory that contains it (BSD method) if the set-GID flag of the directory is on. Otherwise, the
file is assigned the effective group ID of the process that creates it (System V.3 method).

If a sticky flag of an executable file is set, after a process of that program términates, its
text (instruction codg) will stay resident in the computer’s swap memory. Consequently, next
time the program is executed, the kemnel can start up the process faster. The sticky flag is
reserved for frequently used programs, such as the UNIX shell or vi (the visual editor) pro-
grams. A sticky flag can be set or reset on files by the superuser only.

The user and group names of any file are supported in UNIX but not required by
POSIX.1. The function getpwuid converts a user ID to a user name. Similarly, the getgrgid
converts a group ID to a group name. These two functions are defined in the <pwd.h> and
<grp.h> headers, respectively.

The file size is depicted for files, directories, and named pipes. For a device file, the
long_list function shows the major and minor device numbers of the file. These device num-
bers are extracted from the sz_rdev field of the struct stat record. Some UNIX systems supply
macros called MAJOR and MINOR (defined in the <sys/stat.h> header) to render portable
access of these two numbers. If they are not defined by the system, the sample program
defines them explicitly. The MINOR_BITS is the number of least significant bits in the
st_rdev field used to store the minor device number (most UNIX systems use 8 bits), and the
rest of higher order bits in the st_rdev field store the major device number.

The last two fields are the last modification time stamp and the file name. These are
obtained from the st_mtime field of statv and the path_name arguments, respectively.

166

Chep. 7.

A sample output of the above program is:

% a.out /etc/motd /dev/fd0

-rw-r-xrwx 1 joe unix
crw-r--r-x 2 mary admin
drwxr-xr-- 1 terry sharp
%

7.1.11 access

General File APIs

July 5, 1994 /etc/motd
June 25, 1994 /dev/fd0
Oct. 16, 1993 /usr/bin

The access function checks the existence and/or access permission of user to a named

file. The prototype of the access function is:

#include <unistd.h>

int access (const char* path_name, int flag);

The path_name argument is the path name of a file. The fiug argument contains one or
more of the following bit-flags, which are defined in the <unistd.h> header:

Bit flag Use

F_OK Checks whether a named file exists

R_OK Checks whether a calling process has read permis-
sion

w_OK Checks whether a calling process has write permis-
sion

X_OK Checks whether a calling process has execute per-
missien

The flag argument value to an access call is composed by bitwise-ORing one or more
of the above bit-flags. For example, the following statement checks whether a user has read

and write permissions on a file called Jusr/foo/access.doc:

int rc = access(“/usr/foo/access.doc”, R_OKIW_OK),

If a flag value is F_OK, the function returns 0 if the path_name file exists and -1 other-

wise.

If a flag value is any combination of R_OK, W_OK, and X_OK, the access function
uses the calling process real user ID and real group ID to check against the file user ID and

167

Chap. 7. General File APls

group ID. This determines the appropriate category (owner, group, or others) of access per-
missions in checking against the actual value of flag. The function returns O if all the
requested permission is permitted, and -1 otherwise.

The following test_access.C program uses access to determine, for each command line
argument, whether a named file exists. If a named file does not exist, it will be created and
initialized with a character string “Hello world.” However, if a named file does exists, the
program will simply read data from the file:

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

int main (int argc, char* argv(])
{
char buf{256];
int fdesc, len;
while (--argc > 0) {
if (access(*++argv, F_OK)) { /[a brand new file
fdesc = open(*argv, O_WRONLYIO_CREAT, 0744);
write(fdesc, "Hello world\n”, 12);
}else { /I file exists, read data
fdesc = open(*argv, O_RDONLY);
while (len=read(fdesc, buf, 256))
write(1, buf, len);
}
close (fdesc);
} /* for eacn command line argument */

}

The above simple program may be used as a base for a database management program:
If a new database is to be created, the program will initialize the database file with some star-
tup bookkeeping data; whereas if a database file already exists, the program will read some
startup data from the file to check for version compatibility between the program and the
database file, etc.

7.1.12 chmod, fchmod

The chmod and fchmod functions change file access permissions for owner, group, and
others, as well as the set-UID, set-GID, and sticky flags. A process that calls one of these
functions should have the effective user ID of either the superuser or the owner of the file.
The UNIX chmod commands is implemented based on the chmod API.

The prototypes of the chmod and fchmod functions are:

168

Chap. 7. General File APls

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int chmod (const char* path_name, mode_t flag);
int fchmod (int fdesc, mode_t flag);

The path_name argument of chmod is the path name of a file, whereas the.fdesc argu-
ment of fchmod is the file descriptor of a file. The flag argument contains the new access per-
mission and any special flags to be set on the file. The flag value is the same as that used in
the open APL: It can be specified as an octal integer value in UNIX, or constructed from the
manifested constants defined in the <sys/stat.h> header. For example, the following function
turns on the set-UID flag, removes group write permission and others read and execute per-
mission on a file named /usr/joe/funny.book: '

/* chmod.C */
—#include <sys/types.h>
" #include <sys/stat.h>
#include <unistd.h>

void change_mode()
{
struct stat statv; _
int lag = (S_IWGRP | S_IROTH | S_IXOTH);
if (stat(“/usr/joe/funny.book”, &statv }))
perror(“stat”);
else {
flag = (statv.st_mode & ~flag) | S_ISUID;
if (chmod (“usr/joe/funny.book”, flag))
perror(“‘chmod”);
}
}

The above program first calls star to get the file /usr/joe/funny.book current access per-
mission, then it masks off group write permission and others read and execute permission
from the statv.st_mode. Then it sets the set-UID flag in the statv.st_mode. All the other exist-
ing flags are unmodified. The final flag value is passed to chmod to carry out the changes on
the file. If either the chmod or stat call fails, the program will call perror to print a diagnostic
message.

Note that, unlike the open API, the access permission specified in the flag argument of
chmod is not modified by the calling process umask.

169

Chap. 7. General File APls

7.1.13 chown, fchown, ichown

The chown and fchown functions change the user ID and group ID of files. They differ
only in their first argument which refer to a file by either a path name or a file descriptor. The
UNIX chown and chgrp commands are implemented based on these APIs. The Ichown func-
tion is similar to the chown function, except that when the path_name argument is a symbolic
link file, the Ichown function changes the ownership of the symbolic link file, whereas the
chown function changes the ownership of the file to which the symbolic link refers.

The function prototypes of these functions are:

#include <unistd.h>
#include <sys/types.h>

int chown (const char* path_name. uid_t uid, gid_t gid);
int fchown (int fdesc, uid_t uid, gid_t gid);
int Ichown (const char* path_name, uid_t uid, gid_t gid);

The path_name argument is the path name of a file. The uid argument specifies the new
user ID to be assigned to the fi'e. The gid argument specifies the new group ID to be assigned
to the file. If the actual value of the uid or gid argument is -1, the corresponding ID of the file
is not changed.

In BSD UNIX. only a process with superuser privilege can use these functions to
change any file user ID and group ID. However. if a process effective user ID matches a file
user ID and its effective group ID or one of its supplementary group IDs match the file group
ID. the process can change the hle group ID only. :

In UNIX System V, a process whose effective user ID matches either the user ID of a
file or the user ID of a superuser can change the file user ID and group ID.

POSIX]. specifies that if the _POSIX_CHOWN_RESTRICTED variable is defined
with a non -1 value, chown should behave as in BSD UNIX. However, if the
_POSIX_CHOWN_RESTRICTED variable is undefined, chown should behave as in UNIX
System V.

If chown is called by a process that has no superuser privileges and it succeeds on a file,
it will clear the file ser-UID and set-GID flags. This is to prevent users from creating pro-
grams with ownership assigned to someone else (e. g., the superuser) and then executing those
programs with the new owner’s privileges.

170

Chap. 7. General File APis

If chown is called by a process with the effective UID of a superuser it is implementa-
tion-dependent as to how chown will treat the ser-UID and set-GID flags of files it modifies.
In UNIX System V.3 and V.4, those flags are kept intact.

The following test_chown.C program implements the UNIX chown program:

#include <iostream.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <pwd.h>

int main (int argc, char* argv(])

if (argc <3) {
cerr << “Usage: “ << argv[0] << * <usr_name> <file> ...\n";
return 1,

}

struct passwd *pwd = getpwuid(argv[1]); /* convert user name to UID */
uid_t UID = pwd ? pwd->pw_uid : -1, :
struct stat statv:

if (UID == (uid_t)-1)
cerr<< “Invalid user name\n”;

else for (int i=2; i < argc; i++) /* do for each file specified */
if (stat(argv[i],&statv)==0) {
if (chown(argv(i], UID, staty.st_gid))
perror(“chown”);
} else perror(“stat”);

return O;

This program takes at least two command line arguments: the first one is a user name to
be assigned to files, and the second and any subsequent arguments are file path names. The
program first converts a given user name to a user ID via the getpwuid function. If that suc-
ceeds, the program processes each named file as follows: it calls stat to get the file group ID,
then calls chown to change the file user ID. If either the stat or chown API fails, perror will be

called to print a diagnostic message.

171

Chap. 7. General File APl

7.1.14 utime

The utime function modifies the access and modification time stamps of a file. The pro-
totype of the utime function is:

#include <sys/types.h>
#include <unistd.h>

#include <utime.h>

int utime (const char* path_name, struct utimbuf* times);

The path_name argument is the path name of a file. The times argument specifies the
new access time and modification time for the file. The struct utimbuf is defined in the
<utime.h> header as:

struct utimbut

{
time_t actime; /* access time */
time_t modtime /* modification time */

b

POSIX.1 defines the struct utimbuf in the <utime.h> header, whereas UNIX System V
defines it in the <sys/types.h> header. The rime_t data type is the same as unsigned long, and
its data is the number of seconds elapsed since the birthday of UNIX: 12 AM, January 1,
1970 UTC (Universal Time Coordinate).

If times is specified as 0, the API will set-the named file access time and modification
time to the current time. This requires that the calling process have write access to the named
file, its effective user ID match either the file user ID or that of the superuser.

If times is an address of a variable of type struct utimbuf, the API will set the file access
time and modification time according to the values specified in the variable. This requires that
the calling process effective UID either match the file UID or be the same as a superuser.

The return value of utime is 0 if it succeeds or -1 if it fails. Possible failures of the API
may be: The path_name argument is invalid, the process has no access permission and own-
ership to a named file, or the times argument has an invalid address.

The following fest_touch.C program uses the utime function to change the access and
modification time stamps of files. The time stamp to set is also defined by users:

172

Chap. 7. File and Record Locking

/* Usage: a.out <offset in seconds> <file> ... */
#include <iostream.h>

#include <stdio.h>

#include <sys/types.h>

#include <utime.h>

#include <time.h>

int main (int argc, char® argv(])

{
struct utimbuf times;
int offset;
if (argc < 3 |l sscanf(argv{1], “%d”", &offset) != 1) {
cerr << “usage: “ << argv[0] << “ <offset> <file> ...\n";
return 1;
}

/* new time is current time + offset in seconds */
times.actime = times.modtime = time(0) + offset;

for (-i=1;i < argc; i ++) /* touch each named file */
if (utime (argvii], ×)) perror(“utime”);
return O,

}

The above program defines a variable called times of type struct utimbuf and initializes
it with the current time value (as obtained from the rime function call) plus a user-specified
offset time (in seconds). The subsequent command line arguments to the program should be
one or more file path names. For each of these files, the program will call utime to update the
file access time and modification time. If any utime call fails, the program will call perror to
print a diagnostic message.

7.2 File and Record Locking

) UNIX systems allow multiple processes to read and write the same file concurremlyi:
{ This provides a means for data sharing among processes; but it also renders difficulty for any
process in determining when data in a file can be overridden by another process. This is espe-
cially important for applications like a database manager, where no other process can write or
read a file while a process is accessing a database file. To remedy this drawback,/UNIX and
POSIX systems support a file-locking mechanisn;.Fi]e locking is applicable only Tor regular
files) It allows a process to impose a lock on a fil€ S0 that other processes can not modify the
filé until it is unlocked by the process.

173

Chap. 7 File and Record Locking

Spec1ﬁcally, a process can impose a write lock or a read lock on either a portion of a file
or an entire file; The difference between write locks and read locks is that when a write lock
is set, it prevents other processes from setting any overlapping read or write locks on the
locked region of a file. On the other hand, when a read lock is set, it prevents other processes
from setting any oveﬂappmg write locks on the locked region of a file It does, however,
allow overlapping read locks to be set on the file by other processes. Thus, the intention of a
write lock is to prevent other processes “from both reading and writing the locked region while
the process that sets the lock is moaifying the region.:A write lock is also known as an exclu-
sive lock The use of a read lock is to prevent other processes from writing to the locked
region whlle the process that sets the lock is reading data from the region. Other processes are
allowed to lock and read data from the locked regions. Hence,la read lock is also called a
shared lock.

_Furthermore, ﬁle locks are mandatory if they are enforced by an operating system ker-
nel Ifa mandatory exclusive lock is set on a file, no process can use the read or write system
sto access data on the locked reglonl Similarly, if a mandatory shared lock is set on a
regnon of a file, no process can use the Write system call to modify the locked region, These
mechanisms can be used to synchronize reading and writing of shared files by multiple pro-
cesses: If a process Incks up a file, other processes that attempts to write to the locked regions
are blocked until the former process releases its lock. However, mandatory locks may cause
problems: If a runaway process sets a mandatory exclusive lock on a file and never unlocks it,
no other processes can access the locked region of the file until either the runaway process is
killed or the system is rebooted. System V.3 and V.4 support mandatory locks, but BSD
UNIX and POSIX systems do not.

If a file lock is not mandatory, it is an advisory lock. An advisory lock is not enforced
by a kemel at the system call level. This means that even though ¢ lock (read or write) may be
set on a file, other processes can still use the read or write APIs to access the file. To make
use of advisory locks, pro~esses that manipulate the same file must cooperate such that they
follow this procedure for every read or write operation to the file:

* Try to set a lock at the region to be accessed. If this fails, a process can either wait
for the lock request to become successful or go do something else and try to lock the
file again later

* After a lock is acquired successfully, read or write the locked region

* Release the lock

By always attempting to set an advisory lock on a region of a file to be worked on, a
process will not violate any lock protection set by other processes on the same area, and other
processes will not modify that area while the lock in imposed. A process should always
release any lock that it imposes on a file as soon as it is done, so that other processes can
access the now unlocked region. An advisory lock is considered safe, as no runaway pro-
cesses can lock up any file forcefully, and other processes can go ahead and read or write to a
file after a fixed number of failed attempts to lock the file.

174

Chap. V. File and Record Losking

The drawback of advisory locks are that programs that create processes to share files
must follow the above file locking procedure to be cooperative. This may be difficult to con-
trol when programs are obtained from different sources (e.g., from different software ven-
dors). All UNIX and POSIX systems support advisory locks.

UNIX System V and POSIX.1 use the fcntl API for file locking. Specifically, the API
can be used to impose read or write locks on either a segment or an entire file. The fcntl API
in BSD UNIX 4.2 and 4.3 does not support the file locking option. The prototype of the fentl
APl is:

#include <fcntl.h>

int fomel (int fdesc, int cmd_flag, ...);

The fdesc argument is a file descriptor for a file to be processed. The cmd_flag argu-
ment defines which operation is to be performed. The possible cmd_flag values are defined in
the <fcatl. h> header. The specific values for file locking and their uses are:

1// cmd _ﬂag Use
F_SETLK Sets a file lock. Do not block if this cannot succeed
immediately
F_SETLKW Sets a file lock and blocks the calling process until
the lock is acquired
F_GETLK Queries as to which process locked a specified

region of a file

For file locking, the third argument to fcnil is an address of a struct flock-typed variable.
This variable specifies a region of a file where the lock is to be set, unset, or queried. The
struct flock is declared in the <fcntl.h> as:

struct flock
{
‘short |I_type,; /* what lock to be set or to unlock file */
short |_whence; /* areference address for the next field */
off t I_start; /* offset from the |_whence reference address */
off_t |_len; /* how many bytes in the locked region */
pid_t |_pid; /* PID of a process which has locked the file */
2

The I_type field specifies the lock type to be set or unset. The possible values, which are
defined in the <fcntl.h> header, and their uses are:

175

Chap. 7. File and Record Locking

I_type value Use

F_RDLCK Sets a a read (shared) lock on a specified region
F_WRLCK Sets a write (exclusive) lock on a specified region
F_UNLCK Unlocks a specified region

Lhe I_whence, |_start, and I_len define a region of a file to be locked or unlocked. This
is similar to the Iseek API, where the [_whence field defines a reference address to which the
I_start byte offset value is added. The possible values of _whence and their uses are:

I_whence value Use

SEEK_CUR The I_start value is added to the current file pointer
address

SEEK_SET The [_start value is added to byte O of the file

SEEK_END The I_start value 1s added to the end (current size)
of the file

The I_len specifies the size of a locked region beginning from the start address as
defined by I_whence and [_start. If I_len is a positive number greater than 0, it is the length of
the locked region in number of bytes. If I_len is 0, the locked region extends from its start
address to a system-imposed limit on the maximum size of any file. This means that as the
file size increases; the lock also applies to the extended file region. The /_len cannot have a
negative value.

A struct flock-typed variable is defined and set by a process before it is passed to a fcntl
call. If the cmd_arg of the fcntl call is F_SETLK or F_SETLKW), the variable defines a region
of a file to be locked or unlocked. If, however, the cmd_arg is F_GETLK, the variable is used
as both an input and a return variable. Specifically, when fcntl is called, the variable specifies
a region of a file where lock status is queried. Then, when fcntl returns, the variable contains
the region of the file that is locked and the ID of the process that owns the locked region. The
process ID is returned via the I_pid field of the variable.

Note that if a process sets a read lock on a file, for example from address 0 to 256, then
sets a write lock on the file from address 0 to 512, the process will own only one write lock on
the file from O to 512. The previous read lock from 0 to 256 is now covered by the write lock,
and the process does not own two locks on the region from 0 to 256. This process is called
lock promotion. Furthermore, if the process now unlocks the file from 128 to 480, it will own
two write locks on the file: one from 0 to 127 and the other from 481 to 512. This process is
called lock splitting.

A lock set by the fcntl API is an advisory lock. POSIX.1 does not support mandatory
locks. UNIX System V.3 and V.4, however, permit users to set mandatory locks via fcntl. This
is achieved by setting the following attributes of a file, and thereafter any locks set by fcntl on

176

Chap. 7. File and Record Locking

that file will be mandatory locks:
+ Tum on the set-GID flag of the file
+ Tum off the group execute right of the file

Alternatively, the chmod command in UNIX System V.3 and V.4 may also be used to
specify that any read or write locks set on a file are mandatory. The chmod command syntax
is:

chmod a+l <file_name>

All file locks set by a process will be unlocked when the process terminates. Further-
more, if a process locks a file and then creates a child process via fork (the fork API is
explained in the next chapter), the child process will not inherit the file lock.

The return value of fcntl is O if it succeeds or -1 if it fails. Possible causes of failure may
be that the file descriptor is invalid, the requested region to be locked or unlocked conflicts
with locks set by another process, the third argument contains invalid datz, or the system-tun-
able limit on the maximum number of record locks per file has been reached.

The following file_lock.C program illustrates a use of fentl for file locking:

#include <iostream.h>
#include <stdio.h>
#include <sys/types.h>
#include <fentl.h>
#include <unistd.h>

int main (int argc, cnar™ argv(])

struct flock fvar,
int fdesc;
while (--argc > 0) { /* do the following for each file */

if ((fdesc=open(*++argv,O_RDWR))==-1) {
perror(“open”); continue;

}

fvar.|_type = F_WRLCK;
fvar.l_whence = SEEK_SET,
fvar.|_start =0;

fvar.l_len =0;

/* Attempt to set an exclusive (write) lock on the entire file */
while (fentl(fdesc, F_SETLK &fvar)==-1) {

/* Set lock fails, find out who has locked the file */

while (fenti(fdesc,F_GETLK,&fvar)!=-1 &&

177

Chap. 7.

Directory File APls

fvar.|_type!=F_UNLCK) {
cout << *argv << “ locked by “ << fvar.|_pid
<< *“ from * << fvar.]_start << * for *
<< fvar.]_len << * byte for “ <<
(fvar._type==F_WRLCK ? ‘W’ : ‘r') << end};
if (fvar.l_len) break;
fvarl_start +=tvar.l_len;
fvar.l_len =0,
} /* while there are locks set by other processes */
} /" while set lock un-successful */
/* Lock the file OK. Now process data in the file */
/* Now unlock the entire file */
fvar.l_type = F_UNLCK;
fvar.|_whence = SEEK_SET;
fvar.|_start =0;
fvar.l_len =0;
if (fentl(fdesc, F_SETLKW,&fvar)==-1) perror(“fcntl");
}
return O;
} /* main*/

The above program takes one or more path names as arguments. For each file specified,
the program attempts to set an advisory lock on the entire file via Sentl. If the fontl call fails,
the program scans the file to list all lock information to the standard output. Specifically, for
each locked region, the program reports:

The file path name

The process ID that locks that region

The start address of the locked regioﬁ

The length of the locked region

Whether the lock is exclusive (w) or shared (r)

The program loops repeatedly until a fcnel call succeeds in locking the file. After that,
the program will process the file in some way, then it calls fcntl again to unlock the file.

7.3

Directory File APIs

Directory files in UNIX and POSIX systems are used to aid users in organizing their
files into some structure based on the specific use of files (e.g., a user may store all C++
source of a program under the /usr/<program_name>/C directory). They are also used by the
operating system to convert file path names to their inode numbers.

178

Chap.7 Directory File APls

Directory files are created in BSD UNIX and POSIX.1 by the mkdir APL:

#include <sys/stat.h>
#include <unistd.h>

int mkdir (const char* path_name, mode_t mode);

The path_name argument is the path name of a directory file to be created. The mode
argument specifies the access permission for the owner, group, and others to be assigned to
the file. Like in the open API, the mode value is modified by the calling process umask.

The return value of mkdir is O if it Succeeds or -1 if it fails. Possible causes of failure
may be: The path_name is invalid, the calling process lacks permission to create the specified
directory, or the mode argument is invalid.

UNIX System V.3 uses the mknod API to create directory files. UNIX System V.4 sup-
ports both the mkdir and mknod APIs for creating directory files. The difference between the
two APIs is that a directory created by mknod does not contain the «» and “..” links; thus, it is
not usable until those links are explicitly created by a user. On the other hand, a directory cre-
ated by mkdir has the “” and “..” links created in one atomic operation, and it is ready to be
used. In general, mknod should not be used to create directories. Furthermore, on systems that
do not support the mkdir API, one can still create directories via the system API:

char syscmd[256];
sprintf(syscmd, “mkdir %s”, <directory_name>);
if (system (syscmd) == -1) perror(“mkdir”);

~

A newly created directory has its user ID set to the effective user ID of the process that
creates it, and the directory group ID will be set to either the effective group ID of the calling
process or the group ID of the parent directory that hosts the new directory (in the same man-
ner as for regular files).

A directory file is a record-oriented file, where each record stores a file name and the
inode number of a file that resides in that directory. However, the directory record structure is
different on different file systems. For example, UNIX system V directory records are fixed-
size, whereas BSD UNIX directory records are of variable size. To allow a process to scan
directories in a file system-independent manner, a directory record is defined as struct dirent
in the <dirent.h> header for UNIX System V and POSIX.1, and as struct direct in the <sys/
dir.h> header in BSD UNIX 4.2 and 4.3. The struct dirent and struct direct data types have
one common field, d_name, which is a character array that contains the name of a file resid-

179

Chap. 7. Directory File APIs

ing in a directory. Furthermore, the following portable functions are defined for directory file
browsing. These functions are defined in both the <dirent.h> and <sys/dir.h> headers.

#include <sys/types.h>
#if defined (BSD) && !_POSIX_SOURCE
#include <sys/dir.h>

typedef struct direct Dirent;
#else

#include <dirent.h>
typedef struct dirent Dirent;
#endif

DIR* opendir (const char* path_name);
Dirent* readdir (DIR* dir_fdesc);

int closedir (DIR* dir_fdesc);

void rewinddir (DIR* dir_fdesc);

The uses of these functions are:

Function Use

opendir Opens a directory file for read-only. Returns a file
handle DIR* for future reference of the file

readdir Reads a record from a directory file referenced by
dir_fdesc and returns that record information

closedir Closes a directory file referenced by dir_fdesc

rewinddir Resets the file pointer to the beginning of the direc-

tory file referenced by dir_fdesc. The next call to
readdir will read the first record from the file

The opendir function is analogous to the open API. It takes a directory file path name
as an argument and opens the file for read-only. The function returns a DIR* file handler

which has a use similar to that of FILE* value returned from Jfopen. The DIR data structure is
defined in the <dirent.h> or <sys/dir.h> header.

The readdir function reads the next directory record from a directory file referenced by
the dir_fdesc argument. The dir_fdesc value is the DIR* return value from an opendir call.
The function returns the address of a struct dirent or struct direct record, which stores the file
name of a file entry in the directory. When readdir is called after the opendir or rewinddir
API, it w';.LI return the first data record from the file, on the next call it will return the second
data record in the file, etc. When readdir has scanned all records in a directory file, it will
return a zero value to indicate that end-of-file has been reached. Note that a data type called
Dirent was defined to be either struct dirent (for POSIX and System V UNIX) or struct direct

180

Chap. 7. Directory File APls

(for BSD UNIX in non-POSIX conformance mode). In this way, any application that calls
readdir can treat the retuin value uniformly as Dirent in any system.

The closedir function is analogous to the close APL. It terminates the connection
between the dir_fdesc handler and a directory file.

The rewinddir function resets a file pointer associated with a dir_fdesc, so that if read-
dir is called again, it will scan the directory file (referenced by the dir_fdesc) from the begin-
ning.

UNIX systems (System V and BSD UNIX) have defined additional functions for ran-
dom access of directory file records. These functions are not supported by POSIX.1:

Function Use
telldir Returns the file pointer of a given dir_fdesc
seekdir Changes the file pointer of a given dir_fdesc to a

specified address

Directory files are removed by the rmdir APL Users may also use the unlink API to
remove directories, provided they have superuser privileges. These APIs require that the
directories to be removed be empty, in that they contain no files other than the “” and “.”
links. The prototype of rmdir function is:

#include <unistd.h>

int rmdir (const char* path_name);

The following list_dirC program illustrates uses of the mkdir, opendir, readdir,
closedir, and rmdir APIs:

#include <iostream.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <sys/stat.h>
#if defined (BSD) && !_POSIX_SOURCE
#include <sys/dir.h>
typedef struct direct Dirent;
#else
#include <dirent.h>
typedef struct dirent Dirent;
#endif

181

Chap. 7. Device File APIs

int main (int argc, char* argvl])

{
Dirent* dp;
DIR* dir_fdesc;
while (--argc > 0) { /* do the following for each file */
if (!(dir_fdesc = opendir(*++argv))) {
if (mkdir(*argv, S_IRWXUIS_IRWXGIS_{RWXO) ==-1)
perror(“opendir”);
continue;
}
/* scan each directory file twice *4
for (inti=0;i< 2;i++) {
for (int cnt=0; dp=readdir(dir_fdesc);) {
if (i) cout << dp->d_name << end|;
if (stremp(dp->d_name, "} && strcmp(dp->d_name, "..”))
cnt++; /* count how many files in directory*/
}
if (!cnt) { rmdir(*argv); break; } /* empty directory */
rewinddir(dir_fdesc); /* reset pointer for second round */
closedir(dir_fdesc);
} /* for each file */
} /* main */

The above program takes one or more directory file path names as arguments. For each
argument, the program opens it via the opendir and stores the file handler in the dir_fdesc
variable. If the opendir call fails, the program assumes the directory does not exist and
attempts to create it via the mkdir API. If, however, the opendir succeeds, the program scans
the directory file using the readdir API and determines the number of files, excluding “.” and
“.” files, in the directory. After this is done, it removes the directory, via the rmdir APL, if it is
empty. If a directory is not empty, the program resets the file pointer associated with the
dir_fdesc via the rewinddir, it then scans the directory file a second time and echoes all file
names in that directory to the standard output. When the second round of directory scanning

is completed, the program closes the dir_fdesc with the closedir APL

. 7.4 Device File APIs

Device files are used to interface physical devices (e.g, console, modem, floppy drive)
with application programs. Specifically, when a process reads or writes to a device file, the
kernel uses the major and minor device numbers of a file to select a device driver function to
carry out the actual data transfer. Device files may be character-based or block-based.

182

Chap. 7. Device File APls

Device file support is implementation-dependent. POSIX.1 does not specify how
device files are to be created. UNIX systems define the mknod API to create device files:

#include <sys/stat.h>
#include <unistd.h>

int mknod (const char* path_name, mode_t mode, int device_id);

The path_name argument is the path name of a device file to be created. The mode
argument specifies the access permission, for the owner, group, and others, to be assigned to
the file, as well as the S_IFCHR or S_IFBLK flag.“The latter flag is used to indicate whether
this is a character or block device file. Access permission is modified by the-calling process
umask. Finally, the device_id contains the major and minor device numbers and is con-
structed in most UNIX systems as follows: The lowest byte of a device_id is set to a minor
device number and the next byte is set to the major device number. For example, to create a
block device file called SCSI5 with major and minor numbers of 15 and 3, respectively, and
access rights of read-write-execute for everyone, the mknod system call is:

mknod(“SCSI5", S_lFBLKlS_IRWXUIS_IRWXGIS_IRWXO, (15<<8) | 3);

Note that in UNIX System V.4, the major and minor device numbers are extended to
fourteen and eighteen bits, respectively. The major and minor device numbers are used as fol-
lows: When a process reads from or writes to a device file, the file’s major device number is
used to locate and invoke a device driver function that does the actual data transmission with
the physical device. The minor device number is an argument being passed to the device
driver function when it is invoked. This is needed because a device driver function may be
used for different types of device, and the minor device number specifies the parameters (€.8.
buffer size) to be used for a particular device type.

The mknod API must be called by a process with superuser privileges. The user ID and
group ID attributes of a device file are assigned in the same manner as for regular files. The
file size attribute of any device file has no meaningful use.

The return value of mknod is 0 if it succeeds or -1 if it fails. Possible failures include:
The path name specified is invalid, the process lacks permission to create a device file, or the
mode argument is invalid.

Once a device file is created, any process may use the open API to connect to the file. It
can then use read, write, stat, and close APIs to manipulate the file. Iseek is applicable to
block device files but not to character device files. A device file may be removed via the
unlink AP1.

183

Chap. 7. Device File APis

When a process calls open to establish connection with a device file, it may specify the
O_NONBLOCK and O_NOCTTY flags that are defined by POSIX.1. Uses of these flags are
depicted in the following.

In UNIX, if a calling process has no controlling terminal and it opens a character
device file, the kernel will set this device file as the controlling terminal of the process. How-
ever, if the O_NOCTTY flag is set in the open call, such action will be suppressed.

The O_NONBLOCK flag specifies that the open call and any subsequent read or write
calls to a device file should be nonblocking to the process.

Only privileged users (e.g., the superuser in UNIX) may use the mknod API to create
device files. All other users may read and write device files as if they were regular files, sub-
jected to the access permissions set on those device files.

The following test_mknod.C program illustrates use of the mknod, open, read, write,
and close APIs on a block device file.

#include <iostream.h>
#include <stdio.h>
#include «stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>

int main(int arge, char* argv[})

if(argc!=4){
cout << “usage: “ << argv[0] << “ <file> <major no> <minor no>\n";
return O;
}
int major = atoi(argv[2]), minor = atoi(argv[3]);
(voidymknod(argv[1], S_IFCHRIS_IRWXUIS_IRWXGIS_IRWXO,
(major <<8) | minor);

int re=1, fd = open(argv[1], O_RDWRIO_NONBLOCKIO_NOCTTY);
char buf[256];

while (rc && fd 1= -1)
if ((rc = read(fd, buf, sizeof(buf))) <0)
perror(“read”);
else if (rc) cout << buf << endl;
close(fd);
} /* main*/

184

Chap. 7. FIFO File APIs

This program takes three arguments: the first one is a device file name, the second one a
major device number, and the last one a minor device number. The program will use these
arguments to create a character device file via mknod. The program opens the file for read-
write and sets the O_ NONBLOCK and NO_CTTY flags. It then reads data from the device
file and echoes data to the standard output. When end-of-file is encountered, the program
closes the file descriptor associated with the device file and terminates. :

Users should notice that the treatment of device files is almost identical to that of regu-
lar files, the only differences are the ways device files are created and the fact that Iseek is not
applicable for character device files.

7.5 FIFO File APIs

FIFO files are also known as named pipes. They are special pipe device files used for
interprocess communication. Specifically, any process can attach to a FIFO file to read, write,
or read-write data. Data written to a FIFO file are stored in a fixed-size (PIPE_BUF, as
defined in the <limits.h> header) buffer and are retrieved in a first-in-first-out (FIFO) order.

BSD UNIX and POSIX.1 define the mkfifo API to create FIFO files:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int mkfifo (const char* path_name, mode_t mode);

The path_name argument is the path name of a FIFO file to be created. The mode argu-
ment specifies the access permission, for user, group, and others, to be assigned to the file, as
well as the S_IFIFO flag to indicate that this is a FIFO file. Access permission is modified by
the calling process umask. The user ID and group ID attributes of a FIFO file are assigned in
the same manner as for regular files.

For example, to create a FIFO file called FIFO5 with access permission of read-write-
execute for everyone, the mkfifo call is:

mkfifo(“FIFOS5”, S_IFIFO | S_IRWXU | S_IRWXG | S_IRWXO),
The return value of mkfifo is O if it succeeds or -1 if it fails. Possible failures may be:

The path name specified is invalid, a process lacks permission to create the file, or an invalid
mode argument is specified. -

185

Chap. 7. FiFO File APIs

UNIX System V.3 uses the mknod API to create FIFO files. However, UNIX System
V.4 supports the mkfifo API.

Once a FIFO file is created, any process may use the open API to connect to the file,. It
can then use read, write, stat, and close APIs to manipulate the file. Iseek is not applicable to
FIFO files. A FIFO file may be removed via the unlink API.

When a process opens a FIFO file for read-only, the kernel will block the process until
there is another process that opens the same file for write. Similarly, if a process opens a
FIFO for write, it will be blocked until another process opens the FIFO file for read. This pro-
vides a method for processes synchronization. Furthermore, if a process writes to a FIFO that
is full, the process will be blocked until another process has read data from the FIFO to make
room for new data in the FIFO. Conversely, if a process attempts to read data from a FIFO
that is empty, the process will be blocked until another process writes data to the FIFO.

If a process does not desire to be blocked by a FIFO file, it can specify the
O_NONBLOCK fiag in the open call to the FIFO file. With this flag, the open API will not
block the process even though there is no process attached to the other end of the FIFO file.
Furthermore, if the process subsequently calls the read or write API on the FIFO file and data
is not ready for transfer, these functions will return immediately with a -1 value, and set error
to EAGAIN. Thus, the process can continue to do something else and try these operations
later. UNIX System V defines the O_NDELAY flag which has is similar to the
O_NONBLOCK flag. The difference with the O_NDELAY flag is that the read and write
functions will return a zero value when they are supposed to block a process. In this case.it is
difficult to differentiate between an end-of-file condition and an empty one (where there is
the possibility of more being written). UNIX System V.4 supports both the O_NDELAY and
O_NONBLOCK flags.

Another special thing about FIFO files is that if a process writes to a FIFO file that has
no other process attached to it for read, the kernel will send a SIGPIPE signal (signals are
described in Chapter 9) to the process to notify it of the illegal operation. Furthermore, if a
process reads a FIFO file that has no process attached to its write end, the process will read
the remaining data in the FIFO and then an end-of-file indicator. Thus, if two processes are to
communicate via a FIFO file, it is important that the writer process closes its file descriptor
when it is done, so that the reader process can see the end-of-file condition.

It is possible for a process to open a FIFO file for both read and write. POSIX.1 does
not specify how theskemeél should handle this, but in UNIX systems the process will not be
blocked by the open call. The process can use the file descriptor returned from the open API
to read and write data with the FIFO file.

The following test_fifo.C example illustrates use of mkfifo, open, read, write, an close
APIs for a FIFO file:

#include <iostream.h>
#include <stdio.h>

186

Chap. 7. FIFO File APIs

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <string.h>
#include <errno.h>

int main(int argc, char® argv(])

{
if (argc =2 && argc !=3) {
cout << “usage: “ << argv[0] << “ <file> [<arg>\n";
return O;
}
int fd;
char buf[256];
(void)mkfifo(argv(1], S_IFIFOIS_I RWXUIS_IRWXGIS_IRWXO);
if (argc==2) { /* reader process */
fd = open(argv[1],0_RDONLYIO_NONBLOCK).
while (read(fd, buf, sizeof(buf))==-1 && errno==EAGAIN)
sleep(1);
while (read(fd, buf, sizeof(buf))>0)
cout << buf << endi;
}else { /* writer process */
fd = open(argv[1], O_WRONLY);
write(fd, argv(2], strlen(argv(2]));
}
close(fd);
)

The above program takes one or two arguments. The first argument is the name of a
FIFO file to be used. The program calls mkfifo to create the FIFO file if it does not exist. It
then checks whether it has one or two arguments. If it has one argument, it will open the
FIFO file for read-only. It will then read all data from the FIFO file and echo them to the stan-
dard output. However, if the process has two arguments, it will open the FIFO file for write
and will write the second argument to the FIFO file. Thus, this program can be run twice to
create two processes that communicate through a FIFO file. Assuming the program has been
compiled into an executable file call a.out, the sample run of this program is:

% a.out FF64 # create a reader process
% a.out FF64 “Hello world” # create a writer process
Hello world # reader process output

Another method to create FIFO files for interprocess communication is to use the pipe
APIL:

187

Chap. 7. Symbolic Link File APIs

#include <unistd.h>

int pipe (int fds[2]);

The pipe API creates the same FIFO file as does mkfifo. However, the FIFO file created
by the pipe API is transient: There is no file created in a file system to associate with the
FIFO file, and it will be discarded by the kernel once all processes close their file descriptors
that reference the FIFO. The uses of the fds argument are: fds[0] is a file descriptor to read
data from the FIFO file, and fds{1] is a file descriptor to write data to the FIFO file. Because
the FIFO file cannot be referenced by a path name, its use is restricted to processes that are
related: The FIFO file is created by a barent process, which then creates one or more child
processes, these child processes inherit the FIFO file descriptors from the parent, and they
can communicate among themselves, and with the parent, via the FIFO file. The restrictive
use of FIFO files created by the pipe API caused the invention of named pipes, so that unre-
lated processes can communicate using FIFO files.

7.6 Symbolic Link File APIs

Symbolic links are defined in BSD UNIX 4.2 and used in BSD 4.3, System V.3 and
V.4. Symbolic links are developed to overcome several shortcomings of hard tinks:

* Symbolic links can link files across file systems
* Symbolic links can link directory files

* Symbolic links always reference the latest version of the files to which they link

The last point is the major advantage of symbolic links over hard links. For example,
suppose a user creates a file called /usr/go/test] and a hard link to it called Jusr/joe/hdink:

In /usr/go/testi lusr/joe/hdink

If the user deletes the /usr/go/testl, the file is now referenced by /usr/joe/hdink only.
However, if the user then creates a file called /usr/goftestl, which is a file totally different
than /usr/joe/hdink, the /usr/joe/hdink will still refer to the old file, whereas the /usr/go/test]
now refers (o the new file. Thus, hard links can be broken by removal of one or more links.

In the above example if a symbolic link is used instead, the link will not be broken.
Specifically, after a symbolic link called lusr/joe/synink is created as:

In -s /usr/go/ftest1 /ust/joe/symink

188

Chap. 7. Symbolic. Link File APls

If the user deletes the /usr/go/test], the /usr/joe/symink will refer to a nonexistent file,
and any operations on that link (cat, more, sort, etc.) will fail. However, if the user creates the
new /usr/go/testl, the /usr/joe/symink will automatically refer to this new file, and the link is
reestablished again.

Symbolic links are being proposed to be included the POSIX.1 standard. BSD UNIX
defines the following APIs for symbolic links manipulation:

#include %sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int symlink (const char* org_link, const char* sym_link);
int readlink (const char* sym_link, char* buf, _int size);
int Istat (const char* sym_link, struct stat* statv),

The org_link and sym_link arguments to a symlink call specify the original file path
name and the symbolic link path name to be created. For example, to create a symbolic link
called /usr/joe/Ink for a file called /usr/go/testl, the symlink call will be:

symlink (“/usr/go/test1”, “usr/joe/Ink™);

This syntax is the same as that of the link APL The return value of symlink is 0 if it suc-
ceeds or -1 if it fails, Possible causes of failure are: The path name specified is illegal, the
sym_link file already exists, or the calling process lacks permission to create the new file.

To query the path name to which a symbolic link refers, users must use the readlink
APL This is necessary because the open API automatically resolves any symbolic link to the
actual file to which a link refers, and it will connect a calling process to the actual nonlink
file. The arguments to the readlink API are: sym_link is the path name of a symbolic link, buf
is a character array buffer that holds the return path name referenced by the link, and size
specifies the maximum capacity (in number of bytes) of the buf argument. The return value of
readlink is -1 if it fails or the actual number of characters of a path name that is placed in the
buf argument. Possible causes of failure for readlink are: The sym_link path name is not a
symbolic link, the buf argument is an illegal address, or a calling process lacks permission to
access the symbolic link file.

The following function takes a symbolic link path name as argument, and it will call
readlink repeatedly to resolve all links to the file. The while loop terminates when readlink
returns -1, and the buf variable contains the nonlink file path name, which is then printed to
the standard output:

189

* Chap. 7. Symbolic Link File APls

#include <iostream.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>

int resolve_link(const char* sym_link)
{
char* buf{256], thame[256];
strcpy(tname,sym_link);
while (readlink(thame, buf, sizeof(buf)) > 0)
strepy(tname, buf);
cout <<sym_link << “ => “ <<buf << endl;

}

The Istat function is used to query the file attributes of symbolic links. This is needed as
the srar and fstat functions show only nonsymbolic link file attributes. The function prototype
and return values of Istar are the same as those of stat. Furthermore, Istat can be used on non-
symbolic link files, and it behaves like stat. The UNIX Is -l command uses Istat to display
information of all file type, including symbolic links.

The following test_symin.C program emulates the UNIX /n command. The main func-
tion of the program is to create a link to a file. The names of the original file and new link are
specified as the arguments to the program, and if the -s option is not specified, the program
will create a hard link. Otherwise, it will create a symbolic link:

#include <iostream.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>

f* Emulate the UNIX In command */
int main (int argc, char* argv(])

char* buf{256), thame[256];
if ((argc< 3 && argc > 4) Il (argc==4 && strcmp(argv{1],-s"))) {
cout << “usage: “ << argv[0] << “ [-s] <orig_file> <new_link>\n";
return 1,
}
if (argc==4)
return symiink(argv(2), argv[3]);/* create a symbolic link */
else
return link(argv[1], argv{2]);/* create a hard link */

189G

Chap. 7. General File Class

7.7 General File Class

The C++ fstream class can be used to define objects that represent files in a file system.
Specifically, the fstream class contains member functions like open, close, read, write, tellg.
and seekg, which are based on the open, read, write, and Iseek APIs. Thus, any application
program can define fstream class objects associated with files for read and write.

However, fstream does not provide any means for users to perform stat, chmod, chown,
utime, and link functions on its objects. It also does not create any files other than regular
files. Thus fstream does not encapsulate the complete POSIX and UNIX systems file object
functions.

To remedy the fstream class deficiency, a new filebase class is defined below, which
incorporates the fstream class properties and additional functions to allow users to get or
change object file attributes and to create hard links:

[* filebase.h */
#ifndef FILEBASE_H
#define FILEBASE_H

#include<iostream.h>
#include <fstream.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<utime.h>
#include <fentl.h>
#include <string.h>

typedef enum { REG_FILE=T, DIR_FILE='d’, CHAR_FILE='C’,
BLK_FILE="b', PIPE_FILE="p’, SYM_FILE='s’,
UNKNOWN_FILE="?"} FILE_TYPE_ENUM,;

/* A base class to encapsulate POSIX and UNIX file objects’ properties */
class filebase: public fstream

{

protected:
char*filename;
friend ostream& operator<<(ostream& os, filebase& fobj)

/* display file attributes in UNIX Is -/ command output format */
return o0s,
b
public:
filebase() { filename = 0; };

191

Chap. 7. General File Class

filebase(const char* fn, int flags, int prot=filebuf::openprot)
: fstream(fn, flags, prot)
{
filename = new char{strlen(fn)+1];
strepy(filename,fn);
%
virtual ~filebase() { delete filename; };
virtual int create(const char* fn, mode_t mode)
{ return ::creat (fn, mode); h
int fileno() { return rdbuf()->fd(); L
int chmod(mode_t mode)
{ return ::chmod (filename, mode); h
int chown(uid_t uid, gid_t gid)
{ return ::chown(filename, uid, gid); };
int utime(const struct utimbuf *timbuf_Ptr)
{ return ::utime(filename,timbuf_Ptr); };
int link(const char* new_link)
{ return ::link(filename, new_link); >
virtual int remove(){ return ::unlink(filename); };

// Query a filebase object’s file type
FILE_TYPE_ENUM file_type()
{
struct statstatv;
if (stat(filename,&statv)==0)
switch (statv.st_mode & S_IFMT) {

case S_IFREG: return REG_FILE; /1 regular file
case S_IFDIR: return DIR_FILE; // directory file
case S_IFCHR: return CHAR_FILE; // char device file
case S_IFIFO: return PIPE_FILE; // block device file
case S_IFLNK: return SYM_FILE; /I symbolic link file
}
return UNKNOWN_FILE;

%
b

#endif /* filebase.h */

The filebase constructor passes its arguments to its fstream superclass constructor for
connection with an object to a file named by fn with the specified access mode. It then allo-
cates a dynamic buffer to hold the fn path name in a filename private variable. The filename
vartable is used in other member functions like chmod, link, and remove, etc.

The filebase destructor deallocates the filename dynamic buffer. It then uses its fstream
destructor to disconnect an object from a file named by filename.

192

Chap. 7. General File Class

The fileno member function returns the file descriptor of a file managed by a filebase
object.

The chmod member function aids users in changing access permission of a file con-
nected to a filebase object. The argument mode is the same as that for the POSIX.1 chmod
function and the filename variable specifies which file access permission is to be changed.

The chown member function aids users in changing the user ID and group ID of a file
connected to a filebase object. The arguments uid and gid are the same as that for the
POSIX.1 chown function, and the filename variable specifies which file user IDs and group
IDs are to be changed.

The utime member function helps users change the access and modification time
stamps of a file connected to a filebase object. The argument timbuf_Ptr is the same as that
for the POSIX.! utime function, and the filename variable specifies which file access and
modification time stamps are to be changed.

The link member function allows users to create a hard link to a file connected to a file-
base object. The argument new_link contains the new link name. The original link of a file
connected to an object is obtained from the filename variable of the object. This function calls
the POSIX.1 link function to create a new hard link.

The create member function creates a file with a given name. This function calls the
creat API to create a named file in a file system, and it is applicable only for regular files.

The remove member function removes a link referenced by the filename variable of an
object. If this call succeeds, no processes can reference the file with that path name.

The overloaded “<<* operator of ostream is used to display the file attributes of a file
connected to a filebase object. The function may call the long_list function (as depicted in
Section 7.1.10) to query and display the file properties named by the filename private vari-
able.

The file_type function determines the file type of any filebase object. It calls the stat
API on a given filename and determine the file type of a corresponding object. The function
returns an enumerator based on the FILE_TYPE_ENUM data type. If a stat call fails or the
file type of an object is urdetermined, the function returns an UNKNOWN_FILE value. Oth-
erwise, it returns one of the REG_FILE, DIR_FILE. etc. enumerators as return value.

To illustrate the use of the filebase class, the following test_filebase.C program defines
a filebase object called rfile, to be associated with a file called /usr/text/unix.doc for read. Fur-
thermore, the program displays object file attributes to the standard output and changes the
file user ID and group ID to 15 and 30, respectively. Furthermore, it changes the file access
and modification times to the current time, and then creates a hard link called /home/jon/
hdink. Finally, it removes the original link, /usr/text/unix.doc. The test filebase.C program is:

193

Chap. 7. Regfile Class for Reguiar Files

#include “filebase.h”

int main()

{ // Example for filebase
filebase rfile(*/usr/text/unix.doc”,ios::in): // define an object
cout << rfile << endl; // display file attributes
rfile.chown(15, 30); // change UID and GID
rfile.utime(0); // touch time stamp
rile.link(“/home/jon/hdink”); // create a hard link
rfile.remove(); // remove the old link

}

The filebase class defines generic functions for all POSIX and UNIX file types. How-
ever, it does not provide means for creating nonregular files or supporting file type-specific
operations (e.g., file locking). To remedy these drawbacks, the following sections describe
new subclasses of filebase class which provide complete data encapsulation for different
UNIX and POSIX file types.

7.8 Regfile Class for Regular Files

The filebase class encapsulates most of the properties and functions needed to represent
regular file objects in POSIX and UNIX systems except file locking. The regfile class is
defined as a subclass of filebase. but also contains file locking functions. Thus, objects of this
regfile class can do all regular file operations permitted in POSIX and UNIX systems.

The regfile class is defined as follows:

#ifndef REGFILE_H /* This is regfile.h header */
#define REGFILE_H
#include “filebase.h”
/* A class to encapsulate POSIX and UNIX regular file objects’ properties */
class regfile : public filebase
{
public:
regfile (const char* fn, int mode, int prot) : filebase(fn, mode, prot)
~regfile() 8
int lock(int Ick_type, off_t len, int cmd = F_SETLK)
{ struct flock fick;
if ((Ick_typed&ios::in) == ios::in
flck.l_type = F_RDLCK;
else if ((Ick_type &
ios::ou t) ==ios::out)

164

Chap. 7.

Regfile Class for Regular Files

fick.l_type = F_WRLCK;
else return -1;
fick.|_whence = SEEK_CUR;
fick.I_start = (off_t)0;
flck.l_len = len;
return fentl(fileno(), cmd, &flck);

2
int lockw(int lck_type, off_tlen)
{ return
lock(ick_type, len, F_SETLKW),
|3
int unlock(off_tlen) { struct flock fick;

fick.|_type = F_UNLCK;
fick.I_whence = SEEK_CUR,;
fick.I_start = (off_t)0;

fick.I_len = len;

return fenti(fileno(),F_SETLK,&fick);

2
int getlock(int Ick_type, off_t len, struct flock& fick)
{ if ((Ick_type&ios::in) == ios::in)
fick.|_type = F_RDLCK;
else if ((Ick_type &
ios::out)==ios::out)
fick.I_type = F_WRLCK;
else return -1,
fick.I_whence = SEEK_CUR,;
flck.I_start = (off_t)0;
fick.l_len = len;
return fentl(fileno(),F_GETLK &flck);
¥
2
#endif /* regfile.h */

The regfile::lock function can set read lock (Ick_type is ios.:in) or write lock (lck_type
is ios::out) on a region of a file associated with a regfile object. The starting address of a lock
region is the current file pointer of a file and can be set by the fstream::seekg function. The
size of a lock region, in number of bytes, is specified via the len argument. The regfile::lock
function is nonblocking by default. If users specify the cmd argument as F_SETLKW or if it
is called from the regfile::lockw function, the function is blocking. The return value of reg-
file::lock is the same as that of fcntl in file locking operation.

The regfile::lockw function is a wrapper over the regfile::lock function, and it locks
files in blocking mode. The return value of regfile::lockw function is the same as that of the
regfile::lock function. -

195

Chap. 7. dirfile Class for Directory Files

The regfile::unlock function unlocks a region of a file associated with a regfile object.
The starting address of an unlock region is the current file pointer of a file and can be set by

the fstream: :seekg function. The size of an unlock region, in number of bytes, is specified via ..

the len argument. The regfile::unlock function is nonblocking and its return value is the same
as that of fentl in file unlocking mode.

The regfile::getlock function queries lock information for a region of a file associated
with a regfile object. The Ick_type argument specifies whether read lock (Ick_type is ios::in)
or write lock (Ick_type is ios::out) information is sought. The starting address of a region is
the current file pointer of a file and can be set by the fstream::seekg function. The size of the
lock region to be queried, in number of bytes, is specified via the len argument. The reg-
file::getlock function is nonblocking, and its return value is the same as that of fcntl. If a reg-
file::getlock function call succeeds, the flck argument will contain the lock information of a
file region.

The regfile class provides a complete encapsulation of all UNIX and POSIX regular
files functions. It also simplifies the file locking and unlocking APIs such that users need to
know only the fstream class interface to use the regfile::lock, regfile::unlock, and regfile::get-
lock functions. The following test_regfile.C program illustrates how to use a regfile objgct to
create a temporary file called foo, locks the entire file for write, initializes its content with
data from the /etc/passwd file, unlocks the first 10 bytes of the file, and then removes the file:

#include “redfiie.h”

int main()

{ // Example for regfile
ifstream ifs (“/etc/passwd”);
charbuf[256];
regdfilerfile(foo” ios::out | ios::in); /I define a regfile object
rfile.lock(ios::out,0); // set write lock for entire file
while (ifs.getline(buf,256)) rfile << buf << endl;
rfile.seekg(0,ios::beq); // set file pointer to beginning of file
rfile.unlock(10); / unlock the first ten byte of file
rfile.remove(); // remove the file

}

7.9 dirfile Class for Directory Files

The dirfile class is defined to encapsulate all UNIX and POSIX directory file functions.
Specifically, the dirfile class defines the create, open, read, tellg, seekg, close, and remove
functions that use the UNIX and POSIX directory file-specific APIs.

The dirfile class definition is:

196

Chap. 7. dirfile Class for Directory Files

#ifndef DIRFILE_H /* This is dirfile.h header */
#define DIRFILE_H

#include <dirent.h>

#include <string.h>

class dirfile

{
DIR *dir_Ptr;
char *filename;
public:
dirfile(const char* fn)
{ dir_Ptr = opendir(fn);
filename = strdup(fn);
I8
~dirfile() { if (dir_Ptr) close();
delete(filename);
I8
int close() { if (dir_Ptr) closedir(dir_Pt r); h
int create(const char® fn, mode_t prot)
{ return mkdir(fn, prot); h
int open(const char* fn) { dir_Ptr=opendir(fn);
return dir_Ptr ? 0 : -1;
b
int read(char* buf, int size)
struct dirent *dp = readdir(dir_Ptr);
if (dp)
strncpy(buf, dp->d_name,size);
return dp ? strien(dp->d_name)it
2
off_t tellg() { return telldir(dir_Ptr); h
void seekg(streampos ofs, seek_dir d) '
{ seekdir(dir_Ptr, ofs); h
int remove() { return rmdir(filename); h
X
#endif /* dirfile.h */

The dirfile class uses the mkdir API to create directory files. Furthermore, it uses the
opendir and readdir API to open and read directory files, respectively.- To users, a dirfile
object can be treated similarly to a regular file object. The only difference is that a dirfile
object does nothing for write operations. The dirfile: :tellg and dirfile::seekg functions use the
UNIX-specific telldir and seekdir APIs to support random access of any entry in directory
files. Finally, the dirfile::close function uses closedir to close a directory file, and the
dirfile: :remove function uses the rmdir API to remove a directory file from a file system.

197

Chap. 7. FIFO File Class

‘The following test_dirfile.C' program creates the /usr/lck/dir.ex directory using the
dirfile class. It then opens the /etc directory and echoes all files in that directory:

#include “dirfile.h”

int main()
{ // Example for dirfile
dirfile ndir, edir(“/etc”); // create a dirfile object to /etc
ndir.create(“/usr/Ick/dir.ex”); // create /usr/Ick/dir.ex
char buf[256 };
while (edir.read(buf, 256)) // echo files in the /etc dir
cout << buf << end;
edir.close(); /l close a directory file

7.10 FIFO File Class

A FIFO file object differs from a filebase object in that a FIFO file is created, and the
tellg and seekg functions are invalid for FIFO file objects. The following pipefile class encap-
sulates all the FIFO file type properties:

#ifndef PIPEFILE_H /* This is pipefile.h */
#define PIPEFILE_H
#include “filebase.h”

/* A class to encapsulate POSIX and UNIX FIFO file objects’ properties */
class pipefile : public filebase

{
public:
pipefile(const char* fn, int flags, int prot) : filebase(fn, flags, prot)
{h)
int create(const char* fn, mode_t prot)
{ return mkfifo(fn, prot); %
streampos tellg() { return (streampos) - 1; |5
%
#endif /* pipefile.h */

The following test_pipefile.C program creates a FIFO file called FIFO, opens it for
read (if argc is 1) or write (if argc is greater than 1). It reads or writes data via the FIFO file,
thea closes the FIFO file:

198

Chap. 7. Device File Class

#include “pipefile.n”

int main(int argc, char* argv(])

{ / // Example for pipefile
pipefile nfifo(“FIFO”, arge==1 ? jos::in :ios::out, 0755);
if (argc> 1) { // writer process

cout << “writer process write: “ << argv[1] << end;
nfifo.write(argv[1],strlen(argv[1])+1); // write data to FIFO

} else { // reader process
char buf[256];
nfifo.read(buf,256); //read data from FIFO
cout << “read from FIFO: “ << buf << endl;

}

nfifo.close(); // close FIFO file

}

The program can be run twice to create tWo processes that communicate through the
FIFO file. Specifically. one program is run with no command line argument and creates a
reader process. Then the program is run again with a command line argument that creates a
writer process. When both processes are created, the writer process will write its command
line argument to the FIFO file. and the reader process will read that argument from the FIFO
file and echo it to standard output. The following is a sample execution of the program,
assuming that the program has been compiled to a file called rest _pipefile:

% CC -o test_pipefile test_pipefile.C

% test_pipefile & # create a reader process

% est_pipefile “hello” # create a writer'process

writer process write: helio # output from the writer process
read from FIFO: hello # output from the reader process

7.11 Device File Class

A device file object has most of the properties of a regular file object except in the way
that the device file object is created. Also the tellg, seekg, lock, lockw, unlock, and getlock
functions are invalid for any character-based device file objects. The following devfile class
encapsulates all the UNIX device files’ properties:

#ifndef DEVFILE_H /* This is devfile.h header */
#define DEVFILE_H
#include “regfile.h”

199

Chap. 7. Device File Class

class devfile : public regfile

{
public:
devfile(const char* fn, int flags, int prot) : redfile(fn,flags,prot) {};
int create(const char* fn, mode_t prot, int major_no, int minor_no,
char type="c’)
{ if (type=="c)
return mknod(fn, S_IFCHR | prot,
(major_no << 8) | minor_no);
else return mknod(fn, S_IFBLK | prot,
(major_no << 8) | minor_no);
I8
streampos tellg() { if (file_type()==CHAR_FILE)
return (streampos)-1;
else return fstream::tellg();
¥
istream seekg(streampos ofs, seek_dir d)
{ if (file_type()!=CHAR_FILE)
fstream::seekg(ofs,d);
return *this;
I3
int fock(int Ick_type, off_t len, int cmd=F_SETLK)
{ if (file_type()!=CHAR_FILE)
return
regfile::lock(Ick_type,len,cmd);
else return -1;
%
int lockw(int Ick_type, off_tlen)
{ if (file_type()!=CHAR_FILE)
return
regdfile::lockw(Ick_type,len);
else return -1;
int uniock(off_t len) { if (file_type()!=CHAR_FILE)
return redfile::unlock(len);
else return -1;
%
int getlock(int Ick_type, off_t len, struct flock& flck)
{ if (file_type()!=CHAR_FILE)
return
regfile::getlock(Ick_type,len,fick);
else return -1;
8
2
#endif /* devfile.h */

200

